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A NOTE ON GLOBAL SOLVABILITY OF VECTOR FIELDS

JORGE HOUNIE1

ABSTRACT. We consider global solvability of complex vector fields on non-

compact manifolds. The case of real vector fields had been considered by

Malgrange, and Hörmander studied the complex case, assuming that the real

and imaginary parts are everywhere linearly independent.

1. We consider a smooth complex vector field L = X + iY without zeros on a

smooth, paracompact, noncompact manifold M. The real vector fields X and Y

do not vanish simultaneously. The pair of vectors X and Y defines an everywhere-

defined group of local diffeomorphisms in M [8, p. 175]. The equivalence classes

defined by this group (two points, a and b, are related if there is a local diffeomor-

phism in the group that takes a into b) will be called the orbits of L in M. The

orbits are connected submanifolds of M with a natural differentiable structure. If

U Ç M is open, the orbit of L in U through the point p is contained in, but not

necessarily equal to, the intersection of U with the orbit of L in M through p.

We shall deal with the global solvability of the equation (L + a)u = f with u and

/ smooth, and a smooth and fixed. If L + a is surjective in C°°(M), it follows that

L should verify condition (P) in M [5]. Condition (P) implies [3] that the orbits of

L have dimension one or two. We shall assume that:

(1.1) No orbit is relatively compact in M.

This condition is not necessary for the solvability of L + a, but it implies the

sufficient conditions for semiglobal solvability given in [4].

Assume furthermore that:

(1.2) For each compact set K of M there exists a compact set K' such that if B

is an orbit of L in M\K which is relatively compact in M, then B Ç K'.

If (1.1) holds, (1.2) can be reformulated for one-dimensional orbits as follows:

(1.2)' For each compact set K of M there exists a compact set K' Ç M such that

if 7 is a one-dimensional orbit of L in M\K with endpoints in K, it follows that

IQK'.

THEOREM 1.1.   If L verifies (P), (1.1) and (1.2), then

(L + a)C°0(M) = C°°(M)    VaeC7°°(M).

In the special cases where (i) X and Y are linearly independent everywhere, or

(ii) M is an open subset of the plane, Theorem 1.1 follows from [2, §7.1, and 6].

When dim M — 2 it is possible to make these results more precise.

THEOREM 1.2. Assume that L satisfies (1.1) and dim M = 2. Then

(L + a)C°°{M) = C°°(M) if and only if L satisfies (P) and (1.2)'.
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2. If Ex and E2 are smooth vector bundles over M, denote by Tk(Ei) the space

of Ck cross-sections of Ei with its natural topology and by e'k(Ei) its dual i = 1,2.

If K is a compact subset of M, Tk(K, Ex) denotes the quotient of Tk(Ei) by the

subspace consisting of elements vanishing of order k on K. The dual of Tk(K, Ei)

is denoted by e'k(K,Ei); it is naturally injected into e'k(Ei).

We shall use the following version of a theorem of Malgrange [7].

THEOREM 2.1. The following conditions are equivalent for a differential oper-

ator P: T00(Ei) -► T00(E2):

(i) p(r°°(£,i)) = t°°(e2),
(ii) P(r°°(Ä",.Ei)) = T°°(K,E2) for all compact subsets K of M.

Furthermore :

(2.1) For each compact subset K of M and any positive integer k, there is a

compact set K' C M such that if v E e,oc(E2), then tP{v) E e'k(K,Ex) implies

vEe'(K,E2).

Here tP is the dual operator of P.

In the following corollary, Fr V denotes the boundary of an open set V.

COROLLARY 2.2. Let M be a smooth manifold of dimension n. Then for each

compact subset K of M, there is a compact subset K of M such that ifVÇM is

open and relatively compact, FrV Ç K implies V Ç K.

PROOF. We may assume M is not compact. Thus, the nth de Rham cohomology

space Hn(M) = 0. This means that á„(A"_1 C°°(M)) = A" C°°(M). Assuming

that M is orientable, we may identify tdn with —ay. s'(M) —► f\ e'(M) using the

pairings

k n—k «

/\t7fc°°(M)x /\C°°(M)3(a,ß)^     a h ß,        k = 0,1.
J

Now we can apply (2.1) with k = 1 to the characteristic function v of V to obtain

the result in this case. When M is not orientable we apply the previous reasoning

to the orientable double cover of M.    Q.E.D.

In the analysis of condition (2.1), the proposition below will be useful. It is a

standard consequence of the fact that first-order operators that verify (P) possess

uniqueness in the Cauchy problem with respect to noncharacteristic surfaces in the

class of distributions [1].

PROPOSITION 2.3. Assume that the vector field L verifies (P) in M. If u E
V'(M) satisfies (L + a)u = 0, then suppu is a union of orbits of L.

PROOF. We need only show that if 7: [a, b) —► M is an integral curve of ±X or

±Y" which does not reduce to a point and u vanishes in a neighborhood of 7(0),

then u vanishes in a neighborhood of 7(6). We may consider coordinates x\,... ,x„

in a neighborhood U of 7 so that

U = la-6 <xx<b + 6,J2x2 <X\ ,    7(f) = {i,0,...,0},    u = 0,
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in U for xx < a + 6 and, say, d/dx1 — X. Consider a one-parameter family of

smooth surfaces in U, <p(x, e) = 0, x E U, 0 < s < 1, such that the subsets

VE = {<pe < 0} verify

(i)V£cV£,,iie<e',

(n)Uo<e<iVe = U,

(iii) Vx/2 C {Xx < a},

(iv) V£ n {Xx > a} is a compact subset of U, 0 < e < 1,

(v) tpe = 0 is noncharacteristic with respect to d/dx1, 0 < e < 1.

Such a family is easily constructed. Let eq — supe, where the supremum is taken

over those e's for which Ve D suppw = 0. If £o < 1 there is a point p in suppufl U

such that <p(p, £o) = 0 and u vanishes on <p(p, eo) < 0. Since p(x, eo) = 0 is non-

characteristic for L and Lu = 0, u vanishes in a neighborhood of p, a contradiction.

Therefore e0 = 1 and u = 0 in U.    Q.E.D.

Assume that L satisfies (1.1) and (P), and let (p, £) be a characteristic point of

L in T*(M)\0 over a compact set K. Since the orbit of p is not contained in K,

we may find an integral curve 7 of aX — ßY = Re[(a + iß)L] for certain a, ß in

C°°(M) so that 7 joins p to a point outside K. The curve 7 is the projection of a

semibicharacteristic that joins p to a point over the complement of K. The results

of [4] imply that (L + a)C°°(K) = C°°{K) for all compact subsets of M. Assume

furthermore that L satisfies (1.2), and consider the transpose *P — — (L + b) of

P = L + a. If K is a compact subset of M and K' D K, the corresponding subset

in (1.2), we claim that, for u E s'(M), lPu E e'{K) implies u E e'(K'). Indeed, let

p 6 supp u\K and consider the orbit B of L in M\K through the point p. Since

tPu = 0 in M\K, it follows from Proposition 2.3 that B Ç suppu\Ä". Since B is

relatively compact in M, B Ç K' and, in particular, p E K'. Now, we can apply

Theorem 2.1 to P to conclude that P is surjective in C°°(M). This proves Theorem

1.1.

To prove Theorem 2.2 we need two lemmas. We leave to the reader the proof of

the first one.

LEMMA 2.4. Assume that dim M = 2 and let B be a two-dimensional orbit of

L. Then B is open and Fr B is a union of one-dimensional orbits.

LEMMA 2.5.   If dim M = 2 and (1.1) holds, (1.2) and (1.2)' are equivalent.

PROOF. We need only show that (1.2)' implies (1.2). Let K be a compact subset

of M, K' the corresponding subset of property (1.2)', and Kx — K' the subset

corresponding to K' in Corollary 2.2. If 7 is a one-dimensional orbit of L in M\K

which is relatively compact in M, then 7 has two endpoints in K (otherwise 7 would

possess an a-limit point or an w-limit point, and the orbit through the limit point

would be relatively compact in M). Hence 7 Ç K'. Let B be a two-dimensional

orbit in M\K with compact closure in M. In view of Corollary 2.2 it is enough to

prove that Fr S Ç K'. Since FrP is compact, it follows that if p E FrB\K, p is

contained in a one-dimensional orbit 7 in M\K with two endpoints in K. Again

(1.2)' implies that 7 ç K'.    Q.E.D.

The "if" part of Theorem 1.2 follows from Theorem 1.1 and Lemma 2.5. To

complete the proof consider a subset K of M, and let K' be the subset in (2.1)

with fc = 1. If 7: [a, b] —► M\K is a one-dimensional orbit in M\K with endpoints
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in K, we may take coordinates in a neighborhood U of 7([o, b}) so that

[/ = {a - 6 < xx < b + 6, \x2\ < 1},    7(i) = (i, 0),    a < t < b,

tP = 9(a;)(¿+^/?(a:)¿+7(X)),        q*°'

and /3(xi, 0) = 0 if a < xi < b. Set u = ipip ® ¿ E e'(U), where

^(xO^expj^1 ^M(S)0)-7(S)0)) del,

i>{xx) is the characteristic function of the interval [a, b] and rr^) is the Dirac

measure. Then lPu E en (U) Ç e'1 (M) and supp(*Pu) consists of the two endpoints

7(a) and 7(6) contained in K. Thus, supp(u) = 7([a, b]) Ç K'.    Q.E.D.
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