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ISOMETRIES IN SEMISIMPLE, COMMUTATIVE
BANACH ALGEBRAS

KRZYSZTOF JAROSZ

ABSTRACT. We show that for any semisimple, commutative, complex Banach

algebra A with unit there are norms on A, which we call natural norms, equiv-

alent to the original norm on A with the following property: Let (A, || ■ \\a, e¿)

and (B, \\-\\B>eB) are commutative, semisimple Banach algebras with units and

natural norms. Assume T is a linear isometry from (A, \\ ■ \\a) onto (B, \\ ■ \\b)

with Te a = es- Then T is an isomorphism in the category of Banach alge-

bras. For a fairly large class of algebras, for example, for uniform algebras,

for algebras of the form Ck(X), Lip(X), AC(X), the natural norm we have

defined coincides with a usual norm.

0. Introduction. Let A and B be uniform algebras, i.e., Banach algebras with

units such that ||/2|| = ||/||2 for all / E A (for all / E B, respectively). The well-

known Nagasawa theorem [4] states that A and B are isometric if and only if they

are isomorphic in the category of algebras, and that every linear isometry from

A onto B which preserves units is an isomorphism of algebras. In [1, 2, 5—7] it

has been proved that the Nagasawa theorem remains true for some other Banach

algebras.

In 1965 M. Cambern [1] proved that if both A and B are equal to C1 [0,1] or

to AC[0,1], then any isometry of A onto B is induced by a homeomorphism of

the unit interval [0,1]. Here C1[0,1] is the algebra of complex-valued, continuously

differentiable functions on [0,1] with norm

11/11 =omax(|/(í)| + |/'(í)|)    for/eCMCU],

and AC[0,1] is an algebra of complex-valued, absolutely continuous functions on

[0,1] with norm

+ ll/'lli

Af{t)\+ f \f'{t)\dt   for/eAC[0,l].
1 Jo

= max
o<t<

In 1971 N. V. Rao and A. K. Roy [7] proved that this holds for algebras of

Lipschitz functions and continuously differentiable functions both with norm ||/|| =

ll/lloo + ll/'lloo.
In 1981 M. Cambern and V. Pathak [2] proved it for Co(X), where X is a closed

subset of the real line containing no isolated points. Here Cq{X) is a Banach space

of continuously differentiable functions / on X which are such that / and /' are

zero at infinity with norm defined as for Cl[0, 1].

Received by the editors January 9, 1984 and, in revised form, April 23, 1984.
1980 Mathematics Subject Classification, Primary 46J05; Secondary 46B20, 46B25.

©1985 American Mathematical Society

0002-9939/85 $1.00 + $.25 per page

65



66 KRZYSZTOF JAROSZ

Recently, Pathak extended the above result to AC(X), the space of absolutely

continuous functions on a closed subset X of the real line with norm ||/|| = ||/||oo +

variation of f on X [6], and to C'ra' [0,1], the Banach algebra of complex-valued,

n-times continuously differentiable functions on [0,1] with norm

\f{r)(t)\\\

t¡Z\ [h> \
Whether the Nagasawa theorem holds for some Banach algebras A and B de-

pends not only on the algebraic structure of A and B, but also, and in fact mostly,

on the norms in these algebras. For any Banach algebra A there are a number of

equivalent, submultiplicative norms on A. Very simple examples (e.g., I1 with con-

volution multiplication) show that the Nagasawa theorem does not hold in general

for semisimple, commutative Banach algebras with unit. In this paper we define

natural norms on these algebras, we show that they possess a number of natural

norms, and we prove that the Nagasawa theorem holds for such an algebra if it is

equipped with a natural norm.

The norms on C^O, 1], C¿(X), AC(X), and Lip[0,1] of the forms ||/|| = U/H«, +

ll/'llii 11/11 = ll/lloo + H/'lloo, or II/]] = ll/lloo + variation of f are natural, but the
Cambern-Pathak norm on C^™'[0,1] is not; nevertheless there are natural norms

on C(">[0, lj, for example, ||/|| = U/H«, + ||f H«, + • • • + ||/(»)||.
All of these algebras consist of functions defined on a subset of the real line. There

are analogous algebras defined on a subset of Euclidean n-space if we define, in such

an algebra, a norm by ||/|| = ||/||oo + ||-D/||'> where D¡ denotes the differential of

/ and || • ||' is a seminorm. We derive other examples of natural algebras.

The idea of the proof is very simple. We only use, roughly speaking, the fact

that a natural norm on A is a combination of the usual sup-norm and a seminorm

|| • ||' such that ||e^||' = 0.

Our results also hold for some normed spaces which are not algebras.

1.   Definitions and notations.  We denote by P the set of all norms on the

two-dimensional real linear space with p((l,0)) = 1.

For p E P we put

D(p)=  Mm P^-\
yFI     t^o+        t

For Zo EC and r > 0 we put

K(z0,r) = {zEC: \z - z0\ < r}

and write K(r) in place of K(0, r).

If K, H are subsets of the complex plane C we denote by co(ii) the convex hull

of K, we put

K + H = {w + z: w E K, z E H},

and, tor zo E K,

p(K,z0) = sup{r > 0: 3z E K z0 E K{z,r) C K},

p(K)=ini{p(K,z):zEK}.

Assume X is a compact, Hausdorff space, A is a linear subspace of C(X), and

A contains the function constantly equal to one, which we denote by 1. Then:



ISOMETRIES IN BANACH ALGEBRAS 67

By II • 11«, we denote the usual sup-norm on A.

We call a seminorm || • || on A one-invariant if ||a + 1|| = ||a|| for all a E A.

Let p E P and let || • || be a norm on A; then we call it p-norm if there is a

one-invariant seminorm ||| - ||| on A such that || • || — p{\\ ■ ||oo, ||| ■ |||).

We call || • || a natural norm on A if it is a p-norm for some p E P.

By Ä we denote the closure of A in {C(X), \\ ■ ||oo)-

By Ch A we denote the set of extreme points F of the unit ball of (A, || • ||oo)*

such that P(l) = 1, and we identify Ch A with a subset of X.

For fEA we put a(f) = f(X) and 0(f) = co{f(X)).
We call A a regular subspace of C(X) if for any e > 0, any xo E Ch A, and any

open neighborhood U of xo there is an / E A with ||/||oo < 1 + £, f{xo) = 1, and

|/(x)| < e for x E X\U.

In the sequel any semisimple, commutative Banach algebra A is identified, via

the Gelfand transformations [3], with a subalgebra of C(ÜJl(A)), with 9Jt(A) being

the maximal ideal space of A.

2. The results.

THEOREM. Let X and Y be compact Hausdorff spaces, let A and B be complex

linear subspaces of C(X) and C{Y), respectively, and let p,q E P. Assume A and

B contain constant functions, and let \\ ■ \\a, || • ||b be a p-norm and q-norm on A

and B, respectively. Assume next that there is a linear isometry T from (A, \\ • \\a)

onto (B, || • ||s) with Tl — 1. Then if D(p) — D(q) = 0, or if A and B are regular

subspaces ofC(X) and C(Y), respectively, then T is an isometry from {A, \\ ■ ||oo)

onto(B, ||- D«,).

Before proving the theorem let us prove two propositions which show that any

semisimple, commutative Banach algebra A with unit possesses natural norms and

is a regular subspace of C(9Jl(A)).

PROPOSITION 1. Let (A, \\ • ||, 1) be a commutative, semisimple Banach algebra

with unit. Then for any p E P there is a p-norm \\ ■ \\a on A which is submulti-

plicative and equivalent to the original one.

PROOF. Fix xo E 3Ji(A), put A0 = {a E A: a(xo) = 0}, and let P be a linear,

continuous projection from A onto Ao with PI = 0. Fix a positive integer k and

define

\\o\\a — p(||a||ooirc||Po||)    for o E A.

It is easy to check that || ■ \\a is a p-norm on A, equivalent to the original one,

and if A; is sufficiently large then || • \\a is submultiplicative.

PROPOSITION 2. Let (A, \\ ■ ||, 1) be a commutative, semisimple Banach algebra

with unit. Then A is a regular subspace of C(9Jl(A)).

PROOF. Fix an xo E ChA. (A,\\ ■ ||oo) is a function algebra with Choquet

boundary equal to ChA, so [3] there is a net (/Q)aer C A such that ||/Q|| =

1 = f(xo), and (fa) tends uniformly to zero off any neighbourhood of Xq- Since

(A, || • Hoc) is a dense subset of (A, || • ||oo), for any e > 0 there is an fa E A with

\\fa — fa\\oo < £, and this completes the proof.
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PROOF OF THE THEOREM. For any convex subset K of the complex plane and

any tp E [0,2it) we put

c(K,tp) = sup{a £ R: there is a b E R with aei{f> + be^+iv/2 E K}.

For any subspace A of C(X) we define the functions:

cA:Ax [0,2tt) - R    by cA(f,tp) = c(ö(f),tp),

rA: A x R+ x [0,2tt) -» R+    by rA(f,t,<p) = \\f + e^ilH«.

For any £> e [0,27r), / G A, t E R+ we have

OO)t + cA{f,p)<rA{f,t,ip) < yJ{t + cA{f,tp))2 + \\f\\l

and, hence,

(1) hm  (rA(f,t,tp)-t)=cA(f,tp).
t—»+oo

Let

IHU=p(IHUIIHIU),   II -||B = 9(11 -Hoc, III -Ills),
where ||| • |||.a and ||| • |||s are one-invariant seminorms on A and B, respectively.

Fix f E A and put ci = IH/HIai c2 = W^VIHs-   By °ur assumption for any
positive t and any tp E [0,27r), we have

p(rA{f, t, tp), Cl) = q(rB(Tf, t, tp), c2).

Hence, from (1) we get

0=   lim  lp(rA{f,t,'p),c1) - q(rB(Tf,t,tp),c2)}
t—f + OO

=   lim   [rA(f, t, tp)p(l, cx/rA(f, t, tp)) - rA(f, t, <p)\
t—r-oo

+   lim  [rB(Tf, t, tp) - rB{Tf, t, <p)q(l, c2/rB(Tf, t, tp))]
t—»-(-oo

+   lim (rA(f,t,tp)-rB(Tf,t,<p))
t—t-f-OO

= cxD(p) - c2D(q) + cA(f, tp) - cB(Tf, tp).

Hence,

(2)
cB{Tf,<p)-cA(f,<p) = \\\f\\\AD(p)-\\\Tf\\\BD(q)    for all f E A and p e[0,2tt).

LEMMA 1. Let K and H be compact, convex subsets of the complex plane.

Assume c(K, tp) = c(H, tp) for all tp e [0, 2tt).  Then K = H.

PROOF. Assuming the contrary, we obtain that there is a zq E H\K. Since K

is convex and compact, there is a line I such that C\/ is a sum of two connected

components C+ and C~ with K c C+ and z0 E C~. Let tp0 E [0, 2tt) be such that

the vector (cos ipo)sin,Po) is orthogonal to / and has direction from C+ to C_. We

have

c{K,tpo) < c(C+,tpo) < c({zo},<po) < c(H,<po).

For any / e A set A/ = |||/||UD(p) - |||T/|||BL>(9). For any r > 0 and any
compact convex subset K of C, we have

c(K + K(r), <p) = c(K, <p)+r   for all tp E [0, 2tt).
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Hence, by (2) and the lemma for any / E A, we get:

if A/ > 0 then a(Tf) = 0(f) + K{Af);

1 ' if A/ < 0 then è(f) = ff(T/) + K(-Af);

hence,

(4) lir/iu - ll/lloo = a/.

Assume D(p) = £>(<?) = 0. Then for any / E A we have A/ = 0, so (4) gives the

result.

Assume now A and B are regular subspaces of C{X) and C(Y), respectively. To

finish the proof, by symmetry, it is sufficient to show that

(5) HT/H«, - ll/IU = A/ > 0   for all fe A.

For this we put, for any e > 0,

Ae = {f E A: p{ä(f)) < e}.

We prove (5) by showing the following statements:

1. T is a continuous map from (A, || • ||oo) onto (B, \\ ■ Hoc).

2. For each e > 0 the set A£ is dense in (A, || • ||oo)-

3. For each e > 0 and each / E A£ we have HT/Hoo > ||/||oo — £■

Proo/ o/ í/ie /irsí siep.

LEMMA 2. Assume A ¿s a regular subspace of C(X) with 1 G A and let xq E

ChA. Then for any e > 0 and any open neighbourhood U of xo, there is an f E A

such that

ll/IU < 1 + e, /(x0) = 1, \f(x) + X\<eforxE X\U,

and |Im/(x)| < e for all x E X.

PROOF. We define, by induction, a sequence {fk)kx=x C A and a descending

sequence of neighbourhoods (i/fc)^, of the point xq:

We set Ux =U and let fx be any function from A such that ||/i||oo < 1 + e/2,

/i(x0) = 1, and |/i(x)| < e/2 for all x in X\Ux-

Assume we have defined Uk and fk. Then

Uk+l = {xEUk: |/fc(x)-l|<e/2},

ll/fc+illoo < l + e/2,    /fc+i(xo) = l,

and

|/fe+i(x)| < e/2    for all x in X\£/fe+i.

Let n be a positive integer such that X/n < e/6. We define

2 —
/-=£*-»■

n
fc=i

We have /(xo) = 1, and |/(x) + 1| < e for x G X\C/. To complete the proof, fix

x E X\Ux and denote by fco the greatest positive integer not greater than n such
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that x G Uko. We obtain

/(*)
.fco-1

n

feo-l

^(/,(x)-l) + /fco(x)+    ¿2   fM
3 = 1 3=ko + l

<l[(ko-i)^ + l + e + (n-ko)^\

2     n + le
= - +-ö <£

n        n    2

Hence, we get |Im/(x)| < e and ||/||oo < £•

To end the proof of this step, fix e > 0 and assume T is discontinuous. There is an

/o G A such that ||/o||oo < £ and ||T/o||oo = 1- Since any function from B achieves

its sup-norm on Chi?, we can assume there is a yo G Chß with Tfo(yo) = 1- We

put Uo = {y E Y : \Tfo{y) — 1| < e). By the lemma there is a g E B such that

¡Iff|| < 1 + e, g(y0) = 1, \g{y) + 1| < e for y E Y\U and |Imff(y)| < e for y G Y.
From (3) we get

(6) ä{Tfo)=*{fo)+K(bfo)    and    1 - e < A/ < 1;

hence,

coLKY-l,1 - 0(e)) U {2}) c ö(g + Tf0) C co(K(-l, 1) U {2}) + K(0(e));

hence,

cb(9 + I7o,7t/2)<V2 + 0(£)    and    cB(g + Tf0, -tt/2) > 1.6 - 0(e),

so

(7) este + T/o, -tt/2) - cB(g + Tf0, tt/2) > 1.6 - ^2 - 0(e).

Put /t = T_1(j. Notice that for any 0 ^ K c C and any c > 0, we have

p(K + K(c)) > c, so from (3) and the definition of g, we get Ag < 2e,

Kg) = ¿K/i) + tf (Ag)    if 0 < Ag < 2e,

and

ô-(fx)=ô-(g) + K(-Ag)    if A9 < 0.

Hence, since ||/o||oo < £i we get

|ca(/i + /o,iff/2) - ca(/i,±tt/2)| < 0(e),

and

(8) |ca(/i + /o, +7T/2) - ca(/i + /o, -Jr/2)| < 0(e).

By (2) for any f E A the difference between ca{Í,p) and cB(Tf,tp) does not

depend on £> so this gives a contradiction between (7) and (8).

Proof of the second step. Fix f E A with ||/||oo = 1- We can assume, as before,

that there is an xo G ChA such that /(xo) = 1. Put Un = {x E X: |/(x) —

1| < 1/n2}, and let gn E A be such that ||<?n||oo < 1 + X/n2, gn{xo) — L a^d

|ff„(x)| < 1/n2 for x G X\Un. We put /„ — f + gn/n and get

1 + 1/n G à(fn) C co(K(l) U {1 + 1/n}) + K(í/n2),
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and, hence, by a direct computation,

p{à(fn)) < p{à(fn), 1 + 1/n)

< p (co (K(l) U {1 + 1/n}) + K(1/n2), 1 + 1/n)

= 1/n + 1/n2 < 2/n.

Therefore there is a sequence (/n)£Li in A which tends uniformly to / such that

p(â(fn)) - 0.
Proof of the third step. For any K C C and any c > 0, we have p(co(Ä")+Ä'(c)) >

c and, on the other hand, by (3), if A/ < 0, then â(f) = à(Tf) + K(-Af), so if
A/ < 0 then p(o(f)) > -A/, and this proves that A/ > -e for all / G A£.
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