ON THE CONVOLUTION EQUATIONS IN THE SPACE OF DISTRIBUTIONS OF L^p -GROWTH

D. H. PAHK¹

ABSTRACT. We consider convolution equations in the space D'_{L^p} , $1 \le p \le \infty$, of distributions of L^p -growth, i.e. distributions which are finite sums of derivatives of L^p -functions (see [4, 7]). Our main results are to find a condition for convolution operators to be hypoelliptic in \mathscr{D}'_{L^∞} in terms of their Fourier transforms and to show that the same condition is working for the solvability of convolution operators in the tempered distribution space \mathscr{S}' and \mathscr{D}'_{L^p} .

Preliminary. We recall the basic facts about the spaces \mathscr{D}'_{L^p} , $1 \le p \le \infty$, and \mathscr{S}' , which we need in this paper. For the proof we refer to [4, 7].

The space \mathscr{D}'_{L^p} , $1 \leq p \leq \infty$. Let \mathscr{D}'_{L^p} be the space of all C^{∞} -functions ϕ in \mathbb{R}^n such that $\mathscr{D}^{\alpha}\phi$, for all $\alpha \in \mathbb{N}^n$, is in $L^p(\mathbb{R}^n)$ equipped with the topology generated by countable norms

$$\|\phi\|_{m,p} = \left(\sum_{|\alpha| \leq m} \|D^{\alpha}\phi\|_{L^p}^p\right)^{1/2}, \qquad m \in \mathbb{N}, 1 \leq p < \infty,$$

and

$$\|\phi\|_{m,\infty} = \sup_{|\alpha| \le m} \|D^{\alpha}\phi\|_{L^{\infty}}, \quad m \in \mathbb{N}.$$

Then it is obviously a Fréchet space and a normal space of distributions in \mathbb{R}^n . We also have $C_c^{\infty} \subset \mathcal{D}_{L^p} \subset \mathcal{D}'$ with continuous injections.

We denote by \mathscr{D}'_{L^p} , $1 \le p \le \infty$, the dual of \mathscr{D}_{L^q} , where 1/p + 1/q = 1 and these duals are subspaces of the space of distributions in \mathbb{R}^n . A distribution T is in \mathscr{D}'_{L^p} , $1 \le p \le \infty$, if and only if there is an integer m(T) > 0 such that

(1)
$$T = \sum_{|\alpha| \leq m} D^{\alpha} f_{\alpha}, \qquad \alpha \in \mathbf{N}^{n},$$

where the f_{α} 's are bounded continuous functions belonging to $L^{p}(\mathbf{R}^{n})$. Moreover, if $p < \infty$, each f_{α} converges to zero at infinity.

The Fourier transform of a function in \mathcal{D}_{L^1} is a continuous function rapidly decreasing at infinity and also the Fourier transform of a distribution in \mathcal{D}'_{L^1} is a continuous function slowly increasing at infinity.

Received by the editors November 28, 1983 and, in revised form, April 24, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 35D10, 35H05.

¹Partly supported by Korean Science and Engineering Foundation.

82 D. H. PAHK

The space \mathscr{S}' . Let \mathscr{S} be the space of all C^{∞} -functions ϕ in \mathbb{R}^n such that

$$\sup_{|\alpha| \leqslant k, x \in \mathbb{R}^n} (1+|x|)^k |D^{\alpha}\phi(x)| < \infty, \qquad k = 0, 1, 2, \dots,$$

equipped with the topology generated by these countable norms. We denote by \mathscr{S}' the dual of \mathscr{S} . The Fourier transformation is now an isomorphism of \mathscr{S} onto itself and of \mathscr{S}' onto \mathscr{S}' .

The space $\mathcal{O}'_c(\mathcal{S}':\mathcal{S}')$ of convolution operators in \mathcal{S}' consists of distributions $S \in \mathcal{S}'$ satisfying one of the following equivalent conditions:

(i) Given any k = 1, 2, ..., S can be represented in the form

$$S = \sum_{|\alpha| \leq m} D^{\alpha} f_{\alpha},$$

where f_{α} , $|\alpha| \leq m$, are continuous functions in \mathbb{R}^n such that

$$f_{\alpha}(x) = O((1+|x|)^{-k})$$
 as $|x| \to \infty$.

(ii) For every ϕ in \mathcal{S} , $S * \phi$ is in \mathcal{S} . Moreover, the mapping $\phi \to S * \phi$ of \mathcal{S} into \mathcal{S} is continuous.

The Fourier transform \hat{S} of a distribution S in $\mathcal{O}'_{c}(\mathcal{S}':\mathcal{S}')$ is a C^{∞} -function with the following property: For every multi-index α there exists a nonnegative integer l such that

(3)
$$D^{\alpha}\hat{S}(\xi) = O((1+|\xi|)^{l}) \text{ as } |\xi| \to \infty.$$

We denote by $\mathcal{O}_M(\mathcal{S}':\mathcal{S}')$ the space of all C^{∞} -functions with the above property (3). They are multiplication operators in \mathcal{S}' and the Fourier transformation is an isomorphism of $\mathcal{O}'_c(\mathcal{S}':\mathcal{S}')$ onto $\mathcal{O}_M(\mathcal{S}':\mathcal{S}')$ (see [7, Volume II]).

Hypoelliptic convolution equations in the space \mathcal{D}'_{L^p} , $1 \le p \le \infty$. In [10], Zielézny showed how to define, in a general manner, hypoelliptic and entire elliptic convolution operators in subspace of the space of distributions. He also characterized hypoelliptic and entire elliptic convolution operators in the space \mathcal{S}' of tempered distributions. In [6 and 12], he studied hypoelliptic convolution operators in the space of distributions of exponential growth of polynomial power and, in [5], Pahk studied the same problem in the space of distributions of generalized exponential growth introduced in [2].

In this paper it can be seen that for a distribution S in \mathcal{O}'_c the hypoellipticity of the convolution operator S in the space of tempered distributions is equivalent to the hypoellipticity in the space of bounded distributions. We define hypoelliptic convolution operators in $\mathcal{O}'_{L^{\infty}}$ as follows: A distribution S in \mathcal{O}'_{L^1} is said to be hypoelliptic in $\mathcal{O}'_{L^{\infty}}$, if every solution U in $\mathcal{O}'_{L^{\infty}}$ of the convolution equation

$$S*U=V$$

is in $\mathscr{D}_{L^{\infty}}$, when V is in $\mathscr{D}_{L^{\infty}}$; in that case equation (1) is also called hypoelliptic in $\mathscr{D}'_{L^{\infty}}$. Since the space of convolution operators in $\mathscr{D}'_{L^{\infty}}$ is $\mathscr{D}'_{L^{1}}$, hypoelliptic convolution operators in $\mathscr{D}'_{L^{\infty}}$ has to be characterized in $\mathscr{D}'_{L^{1}}$. Because of lack of differentiability of their Fourier transforms there are some difficulties to achieve our goal. In

this paper we only consider subclasses of \mathscr{D}'_{L^1} , containing \mathscr{O}'_c , whose Fourier transforms have certain order derivatives and increase slowly at infinity. In this class we can characterize hypoelliptic convolution operators in $\mathscr{D}'_{L^{\infty}}$. But we have an example of hypoelliptic convolution operators in $\mathscr{D}'_{L^{\infty}}$ which is not in this class.

We now establish a necessary and sufficient condition for a convolution operator to be hypoelliptic in $\mathscr{D}'_{L^{\infty}}$. The result is proved only for a subclass of convolution operators in $\mathscr{D}'_{L^{\infty}}$ and the proof is based on an idea similar to that used in [10 and 12].

DEFINITION. $S \in \mathcal{D}'_{L^1}$ is said to be of class H_m if the Fourier transform \hat{S} is a C^m -function in \mathbb{R}^n and $D^{\alpha}S$, $|\alpha| \leq m$, are slowly increasing at infinity.

The fact that the Fourier transform is a topological isomorphism from \mathcal{O}'_c onto \mathcal{O}_M (see [1, Chapter VII]) implies that every distribution in \mathcal{O}'_c is of class H_m . This class H_m of distributions in \mathcal{D}'_{L^1} will be used for our study of hypoellipticity in $\mathcal{D}'_{L^{\infty}}$. We begin with a lemma.

LEMMA. Let S be a distribution whose Fourier transform is of the form

(5)
$$\hat{S} = \sum_{j=1}^{\infty} a_j \delta(\xi_j),$$

where the ξ_i satisfy the condition

(6)
$$|\xi_j| > 2|\xi_{j-1}| > 2^j, \quad j = 1, 2, \dots,$$

and the a; are complex numbers such that

(7)
$$|a_j| = O(|\xi_j|^{\mu}) \quad as \, j \to \infty$$

for some μ ; then the series in (5) converges in $\mathscr{D}'_{L^{\infty}}$. We assert that $S \in \mathscr{D}_{L^{\infty}}$ if and only if

(8)
$$|a_j| = O(|\xi_j|^{-\nu}) \quad \text{as } j \to \infty$$

for every v > 0.

PROOF. Using the fact that, for $\phi \in \mathcal{D}_{L^1}$

$$|\xi^{\alpha}\hat{\phi}(\xi)| \leq ||D^{\alpha}\phi||_{I^1}, \quad \alpha \in \mathbb{N}^n,$$

the Fourier transforms of functions in a bounded set in \mathcal{D}_{L^1} are uniformly $O(|\xi|^{-\nu})$ as $|\xi| \to \infty$, for every $\nu > 0$. Therefore the series $S = \sum_{j=1}^{\infty} a_j e^{i\langle x, \xi_j \rangle}$ converges in $\mathcal{D}'_{L^{\infty}}$. If the a_j satisfy the condition (8), then the last series and all its term-by-term derivatives converge uniformly in \mathbb{R}^n . Consequently, S is a C^{∞} -function bounded together with its derivatives and so belongs to $\mathcal{D}_{L^{\infty}}$. The converse proof is exactly the same in [10].

We are now in a position to prove our main theorem.

THEOREM 1. Let S be a distribution in \mathscr{D}'_{L^1} which is of class H_m , m > n. Then S is hypoelliptic in $\mathscr{D}'_{L^{\infty}}$ if and only if its Fourier transform satisfies the following condition: There are constants a and M such that

(9)
$$|\hat{S}(\xi)| \ge |\xi|^a \text{ for } \xi \in \mathbb{R}^n \text{ and } |\xi| \ge M.$$

84 D. H. PAHK

PROOF. Suppose that the condition (9) is not satisfied. Then there exists a sequence ξ_i in \mathbb{R}^n defined as in the Lemma and such that

(10)
$$|\hat{S}(\xi_j)| < |\xi_j|^{-j}, \quad j = 1, 2,$$

Then the series

$$U = \sum_{j=1}^{\infty} e^{i\langle x, \xi_j \rangle}$$

converges in $\mathscr{D}'_{L^{\infty}}$, but by the Lemma U is not in $\mathscr{D}_{L^{\infty}}$. On the other hand,

$$S * U = \sum_{j=1}^{\infty} \hat{S}(\xi_j) e^{i\langle x, \xi_j \rangle},$$

and applying the Lemma we conclude that S*U is in $\mathscr{D}_{L^{\infty}}$. Thus S is not hypoelliptic in $\mathscr{D}'_{L^{\infty}}$.

Conversely, let us take a C^{∞} -function ψ in \mathbb{R}^n such that

$$\psi(\xi) = \begin{cases} 1 & \text{for } |\xi| < M, \\ 0 & \text{for } |\xi| > M + 1, \end{cases}$$

where M is the constant in (9). Then we define the Fourier transform \hat{P} of P by the formula

$$\hat{P}(\xi) = \begin{cases} 0 & \text{for } |\xi| < M, \\ \frac{1 - \psi(\xi)}{\hat{S}(\xi)} & \text{for } |\xi| \ge M. \end{cases}$$

Obviously \hat{S} is a C^m -function slowly increasing together with its derivatives up to the mth order. From the fact that S is of class H_m and (9) we can choose a positive integer k so large that

$$\hat{Q}(\xi) = \frac{1}{\left(1 + \left|\xi\right|^{2}\right)^{k}} \hat{P}(\xi)$$

and $D^{\alpha}\hat{Q}(\xi)$, $|\alpha| \leq m$, are in $L^1(\mathbf{R}^n)$ and vanish at infinity, which follows from the iterated "chain rule"

(11)
$$\partial^{\alpha}\left(\frac{1}{\hat{S}}\right) = \sum \frac{\pi_{1}^{k} \partial^{\alpha} j \hat{S}}{\hat{S}^{k+1}} C_{\alpha_{1} \cdots \alpha_{k}}; \qquad \alpha_{1} + \cdots + \alpha_{k} = \alpha.$$

Then we have, applying integration by parts,

$$|Q(x)| = \left| \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i\langle x, \xi \rangle} \hat{Q}(\xi) d\xi \right|$$

$$= \left| \frac{1}{(2\pi)^{n/2}} \frac{1}{(1+|x|^2)^{m/2}} \int_{\mathbb{R}^n} e^{i\langle x, \xi \rangle} (1-\Delta)^{m/2} \hat{Q}(\xi) d\xi \right|$$

$$< C \frac{1}{(1+|x|^2)^{m/2}} \quad \text{for some constant } C.$$

Therefore Q(x) is an L^1 -function, and so the distribution

$$P = (1 + D_1^2 + \cdots + D_n^2)^k Q(x)$$

is in \mathscr{D}'_{L^1} . Furthermore $\hat{S}(\xi)\hat{P}(\xi) = 1 - \psi(\xi)$, whence, passing to the inverse Fourier transform, we see that P is a rapidly decreasing parametrix for S with $\hat{W} = \psi$, that is,

$$(12) S * P = \delta - W.$$

Now assume that S * U = V, where $V \in \mathcal{D}_{L^{\infty}}$ and $U \in \mathcal{D}'_{L^{\infty}}$. Then, making use of (12), we can write

$$U = U * \delta = U * (S * P) + U * W$$

= $(U * S) * P + U * W$
= $V * P + U * W$.

It is obvious that V*P and U*W are in $\mathscr{D}_{L^{\infty}}$, so that U is in $\mathscr{D}_{L^{\infty}}$.

COROLLARY. With the same hypothesis of S in the theorem, (9) implies that every solution U in \mathcal{D}'_{L^p} , $1 \leq p \leq \infty$, of the equation (4) is in \mathcal{D}_{L^p} whenever V is in \mathcal{D}_{L^p} .

PROOF. Viewing the proof of sufficiency of the theorem, P is in \mathscr{D}'_{L^1} and U = V * P + U * W. We can easily see the $\mathscr{D}_{L^p} * \mathscr{D}'_{L^1} \subset \mathscr{D}_{L^p}$ and so U is in \mathscr{D}_{L^p} .

If the given convolution operator S is in \mathcal{D}'_{L^1} , then we have the following weak version of the regularity theorem.

THEOREM 2. If a distribution S in D'_{L^1} satisfies the condition (9), then every solution U in $\mathscr{D}'_{L^{\infty}}$ of the equation (1) with $V \in \mathscr{D}_{L^2}$ is in $\mathscr{D}_{L^{\infty}}$.

PROOF. Applying the same argument as in Theorem 1, we construct the continuous function $\hat{P}(\xi)$ slowly increasing at infinity, and so we find a positive integer k so large that

$$\hat{Q}(\xi) = \frac{1}{\left(1 + |\xi|^2\right)^k} \hat{p}(\xi)$$

is in $L^2(\mathbf{R}^n)$. By Plancherel's theorem, Q(x) is in $L^2(\mathbf{R}^n)$, and so the distribution $P = (1 + D_1^2 + \cdots + D_n^2)^k Q$ is in \mathcal{D}'_{L^2} . Also, we have

$$U = U * \delta = V * P + U * W.$$

Since V is in \mathcal{D}_{L^2} , V * P and U * W are in $\mathcal{D}_{L^{\infty}}$, so that U is in $\mathcal{D}_{L^{\infty}}$.

Combining Theorem 1 with the results of [10] we can state

THEOREM 3. Let S be a distribution in \mathcal{O}'_c . Then the following are equivalent:

- (a) S is hypoelliptic in \mathcal{S}' .
- (b) S is hypoelliptic in $\mathcal{D}'_{1\infty}$.
- (c) There exist constants a and M such that

$$|\hat{S}(\xi)| \ge |\xi|^a$$
 for $\xi \in \mathbb{R}^n$ and $|\xi| \ge M$.

We now give two examples of hypoelliptic convolution operators, one of which is not of class H_m .

86 D. H. PAHK

EXAMPLE 1. Let $S = e^{-|t|}$ in \mathbb{R}^1 . Since $\hat{S}(\xi) = 1/(1+\xi^2)$, it is in \mathcal{O}'_c and satisfies the condition (9). Therefore, it is hypoelliptic in \mathscr{S}' and $\mathscr{D}'_{t,\infty}$.

EXAMPLE 2. Taking $S = 1/(1 + x^2) + \delta$ in R^1 , $\hat{S}(\xi) = e^{-|\xi|} + 1$ is not a C^1 -function in \mathbb{R}^1 and satisfies the condition (9) in Theorem 1 with a = -1 and M = 1. From the fact that $1/(1 + x^2)$ is in \mathcal{D}_{L^1} and $\mathcal{D}_{L^1} * \mathcal{D}'_{L^\infty} \subset \mathcal{D}_{L^\infty}$, S is a hypoelliptic convolution operator in \mathcal{D}'_{I^∞} .

REMARK. We can easily see that the convolution operator S in \mathcal{O}'_c is solvable in \mathcal{O}'_c if and only if \hat{S} satisfies the property (9) and has no zero in \mathbf{R}^n and also characterizes the solvability in \mathcal{O}'_{L^1} because S is actually invertible in \mathcal{O}'_c . Therefore, the convolution operators in \mathcal{O}'_c which have the above properties are solvable in the spaces \mathcal{O}'_{L^p} , $1 \leq p \leq \infty$, and \mathcal{S}' , but the converse does not hold in general. We still leave the problems such as what condition guarantees the hypoellipticity in \mathcal{O}'_{L^∞} for the general convolutors and the solvability in \mathcal{O}'_{L^p} , $1 \leq p \leq \infty$, and \mathcal{S}' without invertibility.

COMMENT. We appreciate the referee for various suggestions to reform our paper. He also suggested to study the relation between the number m in the condition (H_m) and the number p which the Fourier transform of $\hat{S}(\xi)^{-1}(1+|\xi|^2)^{-k}$, for sufficiently large k, is an L^p -convolutor.

REFERENCES

- 1. L. Ehrenpreis, Solution of some problems of diversion. IV: Invertible elliptic operators, Amer. J. Math. 82 (1960), 522-588.
 - 2. I. Gelfand and G. Shilov, Generalized functions, Vols. I, II, III, Academic Press, New York, 1968.
 - 3. L. Hörmander, Hypoelliptic convolution equations, Math. Scand. 9 (1961), 178-184.
 - 4. B. Neto, Introduction to the theory of distributions, Marcel Dekker, New York, 1973.
- 5. D. H. Pahk, Hypoelliptic convolution equations in K'_{M} , Ph.D. Dissertation, State University of New York at Buffalo, 1981.
- 6. G. Sampson and Z. Zielézny, Hypoelliptic convolution equations in \mathcal{K}'_p , p > 1, Trans. Amer. Math. Soc. **223** (1976), 133–154.
 - 7. L. Schwartz, Théorie des distributions, Hermann, Paris, 1959.
- 8. S. Sznajder and Z. Zielézny, On some properties of convolution operators in K'_1 and \mathcal{S}' , J. Math. Anal. Appl. 65 (1978), 543-554.
 - 9. _____, Solvability of convolution equations in \mathcal{X}'_1 , Proc. Amer. Math. Soc. 57 (1976), 103–106.
- 10. Z. Zielézny, Hypoelliptic and entire elliptic convolution equations in subspaces of the space of distributions. I, Studia Math. 28 (1967), 317-332.
 - 11. _____, On the space of convolution operators in K'_1 , Studia Math. 31 (1978), 219–232.
- 12. _____, Hypoelliptic and entire elliptic convolution equations in subspaces of the space of distributions. II, Studia Math. 32 (1969), 47–59.

DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY, SEOUL 120, KOREA