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ON THE CONVOLUTION EQUATIONS IN THE SPACE

OF DISTRIBUTIONS OF L ''-GROWTH

D. H. PAHK1

Abstract. We consider convolution equations in the space D',P, 1 ^p < oo, of

distributions of ¿''-growth, i.e. distributions which are finite sums of derivatives of

L ''-functions (see [4, 7])- Our main results are to find a condition for convolution

operators to be hypoelliptic in 3>'t^ in terms of their Fourier transforms and to show

that the same condition is working for the solvability of convolution operators in the

tempered distribution space S/" and @>'i_P.

Preliminary. We recall the basic facts about the spaces 3>'LP, 1 < p < oo, and S/",

which we need in this paper. For the proof we refer to [4, 7].

The space 3>'LP, 1 < p «% oo. Let Sd'L„ be the space of all C°°-functions <b in R" such

that S>a<p, for all a G N", is in LP(R") equipped with the topology generated by

countable norms

Í Ï1/2

ll*IU.y» =      E   ll^lfz."       ,        mGN,l <p< oo,

and

IklL.oo =  sup \\Da<b\\L~,       wgN.
|a|<m

Then it is obviously a Fréchet space and a normal space of distributions in R". We

also have Cc°° c 3>LP c 3>' with continuous injections.

We denote by @)'L,, 1 < p < oo, the dual of @>Lq, where 1/p + \/q = 1 and these

duals are subspaces of the space of distributions in R". A distribution T is in S>'L„,

1 < p < oo, if and only if there is an integer m{T) > 0 such that

(i) r= t d%,     «gn«,

where the/a's are bounded continuous functions belonging to LP(R"). Moreover, if

p < oo, each/a converges to zero at infinity.

The Fourier transform of a function in 2¿L\ is a continuous function rapidly

decreasing at infinity and also the Fourier transform of a distribution in 3i'L\ is a

continuous function slowly increasing at infinity.
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The spaceSf". Let^be the space of all C°°-functions § in R" such that

sup       (1 +\x\)k\Da4>(x)\< oo,       k = 0,1,2,...,
|ff|«A:, .vGR"

equipped with the topology generated by these countable norms. We denote by if '

the dual of if. The Fourier transformation is now an isomorphism of if onto itself

and of if' onto if".

The space <9'c (if' : if' ) of convolution operators in if' consists of distributions

Xey satisfying one of the following equivalent conditions:

(i) Given any k = 1,2,..., S can be represented in the form

(2) S=   Z  D°fa,
|«|«m

where fa, \a\ < m, are continuous functions in R" such that

fa(x)= 0((l+\x\yk)    as |x|-»oo.

(ii) For every <p in if, S * <j> is in if. Moreover, the mapping § -» 5 * <}> of y into if

is continuous.

The Fourier transform S of a distribution S in Q'c (if' : if' ) is a C°°-function with

the following property: For every multi-index a there exists a nonnegative integer /

such that

(3) D«S(0 = o((l+\è\)')    as HI- oo.

We denote by 0M (if': if' ) the space of all C°°-functions with the above property

(3). They are multiplication operators in if' and the Fourier transformation is an

isomorphism of &'. (if' :if' ) onto 0M (if ' : if" ) (see [7, Volume II]).

Hypoelliptic convolution equations in the space 3)'LP, 1 «S p < oo. In [10], Zielézny

showed how to define, in a general manner, hypoelliptic and entire elliptic convolu-

tion operators in subspace of the space of distributions. He also characterized

hypoelliptic and entire elliptic convolution operators in the space if' of tempered

distributions. In [6 and 12], he studied hypoelliptic convolution operators in the

space of distributions of exponential growth of polynomial power and, in [5], Pahk

studied the same problem in the space of distributions of generalized exponential

growth introduced in [2].

In this paper it can be seen that for a distribution 5 in 0[. the hypoellipticity of the

convolution operator S in the space of tempered distributions is equivalent to the

hypoellipticity in the space of bounded distributions. We define hypoelliptic con-

volution operators in 3>'L^ as follows: A distribution S in 2'L\ is said to be

hypoelliptic in 2'L^, if every solution U in 3>'L^ of the convolution equation

(4) S * U = V

is in 3>Lt,, when V is in ¡2>L~; in that case equation (1) is also called hypoelliptic in

!£>[■*. Since the space of convolution operators in 3'L<* is 2¿>'L\, hypoelliptic convolu-

tion operators in 3>'L^ has to be characterized in &¡i. Because of lack of differentia-

bility of their Fourier transforms there are some difficulties to achieve our goal. In
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this paper we only consider subclasses of &'L\, containing §'c, whose Fourier

transforms have certain order derivatives and increase slowly at infinity. In this class

we can characterize hypoelliptic convolution operators in 3)'¡j*. But we have an

example of hypoelliptic convolution operators in S>'L^ which is not in this class.

We now establish a necessary and sufficient condition for a convolution operator

to be hypoelliptic in 3>'L*,. The result is proved only for a subclass of convolution

operators in ëè'L„ and the proof is based on an idea similar to that used in [10 and

121"
Definition. 5 g 2>'li is said to be of class Hm if the Fourier transform S is a

C""-function in R" and D"S, \a\ < m, are slowly increasing at infinity.

The fact that the Fourier transform is a topological isomorphism from &'. onto 6M

(see [1, Chapter VII]) implies that every distribution in 0'c is of class Hm. This class

Hm of distributions in 3)'L\ will be used for our study of hypoellipticity in ^¿„. We

begin with a lemma.

Lemma. Let S be a distribution whose Fourier transform is of the form

00

(5) S = £ aj8(tj),
7 = 1

where the £ • satisfy the condition

(6) l£/l>2|l,-il>2''>      y = 1,2,...,
and the Oj are complex numbers such that

(7) |ö;l=0(|i/)   asj-*ao

for some p; then the series in (5) converges in 3>'L^. We assert that S G S>L^ if and only

if

(8) 1^1-0(1«/')   asj^ao

for every v > 0.

Proof. Using the fact that, for d> g 3ljy

|¿>(í)|<||0>||¿., «gN\

the Fourier transforms of functions in a bounded set in 2L\ are uniformly 0(\$\~")

as ||| —» oo, for every v > 0. Therefore the series S = £yL1ö.e/'*,i^ converges in

^Loo. If the üj satisfy the condition (8), then the last series and all its term-by-term

derivatives converge uniformly in R". Consequently, S is a C°°-function bounded

together with its derivatives and so belongs to 2>L^. The converse proof is exactly the

same in [10].

We are now in a position to prove our main theorem.

Theorem 1. Let S be a distribution in 2'¡\ which is of class Hm, m > n. Then S is

hypoelliptic in 3l'L^ if and only if its Fourier transform satisfies the following condition:

There are constants a and M such that

(9) \S{l)\>\t\°   forteWand\i\>M.
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Proof. Suppose that the condition (9) is not satisfied. Then there exists a

sequence |y in R" defined as in the Lemma and such that

(10) \S(tj)\'<fc£J.      J = 1,2,....
Then the series

00

7 = 1

converges in 3)'ir., but by the Lemma U is not in S>L^. On the other hand,

00

s*u= Ls(i>'<^<>,
7 = 1

and applying the Lemma we conclude that S * U is in 3)L^. Thus S is not hypoelliptic

in^[oc.

Conversely, let us take a C°°-function $ in R" such that

1     for ||| < M,

0     for|||>M+l,

where M is the constant in (9). Then we define the Fourier transform P of P by the

formula

*<i)

10 for ||| < M,

s(i)
for ||| > M.

Obviously S is a C"-function slowly increasing together with its derivatives up to the

wth order. From the fact that S is of class Hm and (9) we can choose a positive

integer k so large that

(Hi)- 2\k

(i+ltf)
/>(«)

and DaQ(i), \a\ < m, are in L1(R") and vanish at infinity, which follows from the

iterated "chain rule"

(H)

Then we have, applying integration by parts,

ax +  ■ ■ ■ + ak = a.

|0(x)| =
1

(2*)

1

-¡J<^Q(i)di

1

< C-

(2*)"/¿(i+\x\2)

1

/2fe-<^(l-^/2Qtt)dè

(i+i*n2\ m/2
for some constant C.
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Therefore Q(x) is an ^-function, and so the distribution

i»T.(i+A2+ ••• +A,2) ß(*)

is in íS¿i. Furthermore S(è,)P(^) = 1 — tf'(l), whence, passing to the inverse Fourier

transform, we see that P is a rapidly decreasing parametrix for 5 with W = \p, that

is,

(12) S*P = 8 - W.

Now assume that S *U = V, where K g ^l„ and U g ^[„. Then, making use of

(12), we can write

U = U*8 = U*(S*P) + U*W

= (U*S)*P + u*w
= y*p+ (J*W.

It is obvious that V * P and U * W are in 2L^, so that U is in 3)L<».

Corollary. With the same hypothesis of S in the theorem, (9) implies that every

solution U in 2>'LP, 1 < p < oo, of the equation (4) is in 3>LP whenever V is in 3>LP.

Proof. Viewing the proof of sufficiency of the theorem, P is in @>'L\ and

U = V* P + U*W.'We can easily see the 3>LP * S)'Li c 3)LP and so Uis in 2)LP.

If the given convolution operator S is in 3>'L\, then we have the following weak

version of the regularity theorem.

Theorem 2. If a distribution S in D'L¡ satisfies the condition (9), then every solution

U in @>',n of the equation (1) with V G 3).i is in 3),<*.

Proof. Applying the same argument as in Theorem 1, we construct the continu-

ous function Pd) slowly increasing at infinity, and so we find a positive integer k so

large that

ê(i)= -   * . .pu)
(i+líl2)

is in L2(R"). By Plancherel's theorem, Q(x) is in L2(R"), and so the distribution

P = (1 + D\ +  • • • + D2)kQ is in 2'0. Also, we have

U = U*8 = V*P + U*W.

Since V is in 3>Li, V * P and U * W are in ^L„, so that U is in 3)L«>.

Combining Theorem 1 with the results of [10] we can state

Theorem 3. Let S be a distribution in 0'c. Then the following are equivalent:

(a) S is hypoelliptic in if'.

(b) S is hypoelliptic in 2'L^.

(c) There exist constants a and M such that

\Ê(l)\>llf   forteR"and\S\>M.

We now give two examples of hypoelliptic convolution operators, one of which is

not of class 77„.
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Example 1. Let 5 = e~w in R1. Since S(|) = 1/(1 + |2), it is in G'e and satisfies

the condition (9). Therefore, it is hypoelliptic in^" and ¿iï'u*.

Example 2. Taking S = 1/(1 + x2) + 8 in R\ 5(|) = e_lil + 1 is not a C1-

function in R1 and satisfies the condition (9) in Theorem 1 with a = -1 and M = 1.

From the fact that 1/(1 + x2) is in 3>L\ and ^Li * ¿^¿« c 3)Lm, S is a hypoelliptic

convolution operator in Sd'L^.

Remark. We can easily see that the convolution operator S in 0[. is solvable in &'.

if and only if S satisfies the property (9) and has no zero in R" and also characterizes

the solvability in 3>'L\ because S is actually invertible in 0'c. Therefore, the convolu-

tion operators in 0'. which have the above properties are solvable in the spaces S¿¡[p,

1 < p < oo, and if', but the converse does not hold in general. We still leave the

problems such as what condition guarantees the hypoellipticity in 3>'L<* for the

general convolutors and the solvability in 2>'LP, 1 < p < oo, and if' without invert-

ibility.

Comment. We appreciate the referee for various suggestions to reform our paper.

He also suggested to study the relation between the number m in the condition (77m)

and the number/» which the Fourier transform of S(|)_1(l 4- |||2)_A:, for sufficiently

large k, is an L^-convolutor.
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