AN EXAMPLE IN THE THEORY OF HYPERCONTRACTIVE SEMIGROUPS

ANDRZEJ KORZENIOWSKI AND DANIEL W. $STROOCK^1$

ABSTRACT. Let $L = x(d^2/dx^2) + (1-x)(d/dx)$ on $C_c((0,\infty))$ be the Laguerre operator. It is shown that for t > 0, and $1 , <math>e^{t/t}$: $L^p(e^{-x}dx) \rightarrow L^q(e^{-x}dx)$ has norm 1 if and only if $e^{-t} \leqslant (p-1)/(q-1)$ and the corresponding logarithmic Sobolev constant is not equal to $2/\lambda$, where λ is the smallest nonzero eigenvalue of L.

Let (E, \mathcal{F}, m) be a probability space and $\{P_t: t > 0\}$ a conservative Markov semigroup on B(E) for which m is a reversible measure (i.e. for each t > 0, P_t is symmetric on $L^2(m)$). Then, as an easy application of Jensen's inequality, $\|P_t\|_{L^p(m) \to L^p(m)} \le 1$ for all t > 0 and $p \in [1, \infty]$. In particular, each P_t admits a unique extension \overline{P}_t as a bounded operator on $L^2(m)$ and $\{\overline{P}_t: t > 0\}$ is a semigroup of selfadjoint contractions. A well-studied example of this situation is the Ornstein-Uhlenbeck semigroup $\{\Gamma_t^{(d)}: t > 0\}$ on $B(R^d): E = R^d, m(dx) = \gamma^{(d)}(dx) = g^{(d)}(1, x) dx$, and $P_t = \Gamma_t^{(d)}$ is given by

$$\Gamma_t^{(d)} f(x) = \int g^{(d)} (1 - e^{-2t}, y - e^{-t}x) f(y) dy$$

where $g^{(d)}(\tau,\xi) = (2\pi\tau)^{-d/2} \exp(-|\xi|^2/2\tau)$, $(\tau,\xi) \in (0,\infty) \times R^d$. In connection with his work on constructive field theory, E. Nelson [2] discovered that $\{\Gamma_t^{(d)}: t>0\}$ enjoys a hypercontractivity property. Namely, he showed that for given $1 , <math>\|\Gamma_t^{(d)}\|_{L^p(\gamma^{(d)}) \to L^q(\gamma^{(d)})} \le 1$ if and only if $e^{-2t} \le (p-1)/(q-1)$. In addition, he noted that if $e^{-2t} > (p-1)/(q-1)$, then $\|\Gamma_t^{(d)}\|_{L^p(\gamma) \to L^q(\gamma)} = \infty$. Since Nelson's initial discovery, many other examples of hypercontractive semigroups have been found (cf. F. Weissler [7, 8], F. Weissler and C. Mueller [9], and O. Rothaus [3–5]). In most cases the difficult part of the analysis lies in the attempt to obtain the optimal result (i.e. the smallest T(p,q) > 0 such that $\|P_t\|_{L^p(m) \to L^q(m)} \le 1$ for all $t \ge T(p,q)$). The work of L. Gross [1] shows that this question is closely related to that of finding the smallest $\alpha > 0$ for which the logarithmic Sobolev inequality

(1)
$$\int |f|^2 \log |f|^2 dm \leq \alpha \mathscr{E}(f, f) + \|f\|_{L^2(m)}^2 \log \|f\|_{L^2(m)}^2$$

Received by the editors March 27, 1984 and, in revised form, June 6, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47D05; Secondary 46E30.

Key words and phrases. Laguerre semigroup, logarithmic Sobolev inequality, Ornstein-Uhlenbeck semigroup, hypercontractivity.

¹The work of this author was supported in part by N.S.F. Grant MCS 8310542.

holds, where \mathscr{E} denotes the Dirichlet form associated with $\{\overline{P}_t: t > 0\}$ (i.e.

$$\mathscr{E}(f,f) = \sup_{t>0} \frac{1}{t} \left(f - \overline{P}_t f, f \right)_{L^2(m)} = \lim_{t\to 0} \frac{1}{t} \left(f - \overline{P}_t f, f \right)_{L^2(m)}$$

and $\text{Dom}(\mathscr{E}) \equiv \{ f \in L^2(m) : \mathscr{E}(f, f) < \infty \}$). Indeed, under mild conditions, Gross's analysis shows that (1) for a given $\alpha > 0$ is equivalent to

(2)
$$||P_t||_{L^p(m)\to L^q(m)} \leqslant 1, \qquad e^{-4t/\alpha} \leqslant \frac{p-1}{q-1}.$$

(cf. D. Stroock [6, §9], for additional information). Further, Rothaus [3] has shown that the *logarithmic Sobolev constant* (i.e., the smallest α for which (1) holds) must be at least $2/\lambda$, where

(3)
$$\lambda = \inf \left\langle \mathscr{E}(f, f) \colon ||f||_{L^2(m)} = 1 \text{ and } \int f \, dm = 0 \right\rangle$$

is the gap between 0 and the rest of the spectrum of the generator $\{\overline{P}_t: t > 0\}$. For the most part, the technique adopted for proving optimality has been to prove that (1) holds with $\alpha = 2/\lambda$ (cf. [9]).

The main purpose of this note is to provide a simple example for which the hypercontractivity constant is not $2/\lambda$. To this end, take: $E = [0, \infty), m(d\rho) = e^{-\rho} d\rho$, and for locally bounded measurable $f: [0, \infty) \to R^1$ having subexponential growth at ∞ , define $P_t f$ so that

(4)
$$P_t f(\rho^2/2) = \left[\Gamma_{t/2}^{(2)} \tilde{f} \right] (\rho \omega), \quad t > 0 \text{ and } \rho \in [0, \infty),$$

where $\tilde{f}(x) = f(|x|^2/2)$, $x \in \mathbb{R}^2$, and $\omega = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbb{R}^2$. Then the following facts about $\{P_t: t > 0\}$ are easy to check:

- (i) $\{P_{t|B(E)}: t > 0\}$ is a conservative Markov semigroup,
 - (ii) for each t > 0, P_t is symmetric on $L^2(m)$.
- (6) LEMMA. Let 1 and <math>t > 0 be given. If $e^{-t} \le (p-1)/(q-1)$, then $\|P_t\|_{L^p(m) \to L^q(m)} \le 1$. If $e^{-t} > (p-1)/(q-1)$, then $\|P_t\|_{L^p(m) \to L^q(m)} = \infty$.

PROOF. Note that for any $r \in [1, \infty)$ and any measurable $g: [0, \infty) \to R^1$, $\|g\|_{L^r(m)} = \|\tilde{g}\|_{L^r(\gamma^{(2)})}$. Also, observe that for any locally bounded $f: [0, \infty) \to R^1$ having subexponential growth at ∞ , $\Gamma_{t/2}^{(2)} \tilde{f} = P_t f$, t > 0. Thus, $\|P_t\|_{L^p(m) \to L^q(m)} \le 1$ is equivalent to $\|\Gamma_{t/2}^{(2)} \tilde{f}\|_{L^q(\gamma^{(2)})} \le \|\tilde{f}\|_{L^p(\gamma^{(2)})}$ for all locally bounded measurable $f: [0, \infty) \to R^1$ which have subexponential growth at ∞ . In particular, by Nelson's inequality, $\|P_t\|_{L^p(m) \to L^q(m)} \le 1$ if $e^{-t} \le (p-1)/(q-1)$. To prove that $\|P_t\|_{L^p(m) \to L^p(m)} = \infty$ if $e^{-t} > (p-1)/(q-1)$, consider the functions $f_{\lambda}(\rho) = \exp(2^{1/2}\lambda \rho^{1/2} - \lambda^2/2)$ for $\lambda > 0$. In view of the preceding considerations, we need only check that

$$\lim_{\lambda \to \infty} \| \Gamma_{t/2}^{(2)} \tilde{f}_{\lambda} \|_{L^{q}(\gamma^{(2)})} / \| \tilde{f}_{\lambda} \|_{L^{p}(\gamma^{(2)})} = \infty$$

when $(p-1)/(q-1) > e^{-t}$. By straightforward computation, one can easily see that

$$[(\pi/2)^{1/2} r \lambda]^{1/r} \exp(\lambda^2 (r-1)/2)$$

$$\leq ||\tilde{f}_{\lambda}||_{L^r(\gamma^{(2)})} \leq (1 + (2\pi)^{1/2} r \lambda)^{1/r} \exp(\lambda^2 (r-1)/2)$$

for any $\lambda > 0$ and $r \in (1, \infty)$. At the same time,

$$\left[\Gamma_{t/2}^{(2)}\tilde{f}_{\lambda}\right](x) \geqslant \sup_{\theta \in S^{1}} \left[\Gamma_{t/2}^{(2)} g_{\lambda\theta}\right](x) = \sup_{\theta \in S^{1}} g_{\lambda e^{-t/2}\theta}(x) = \tilde{f}_{\lambda e^{-t/2}}(x),$$

where $g_{\eta}(x) = \exp(\eta \cdot x - |\eta|^2/2)$ for $\eta \in R^2$ and we have used the fact that $\Gamma_s^{(2)} g_{\eta} = g_{e^{-s}\eta}$ for all s > 0 and $\eta \in R^2$. After combining these, one easily arrives at the desired conclusion. Q.E.D.

To complete our analysis, we must compute the λ associated with $\{\overline{P}_t: t > 0\}$. To this end, let $\{Y_n: n > 0\}$ be the normalized Laguerre polynomials (i.e. the normalized orthogonal polynomials on $[0, \infty)$ with respect to m) and define $H = \Delta - x\nabla$ on $C^{\infty}(\mathbb{R}^2)$. Then, as is well known,

$$\rho \frac{d^2 Y_n}{d\rho^2}(\rho) + (1-\rho) \frac{d Y_n}{d\rho}(\rho) = -n Y_n(\rho), \qquad n \geqslant 0 \text{ and } \rho \in [0, \infty).$$

From this, it is an easy matter to check that

$$H\tilde{Y}_n = -2n\tilde{Y}_n, \qquad n \geqslant 0.$$

Since $\Gamma_t^{(2)}f - f = \int_0^t \Gamma_s^{(2)} Hf ds$, t > 0, for all polynomials $f: \mathbb{R}^2 \to \mathbb{R}^1$, we conclude that

$$\Gamma_{t/2}^{(2)}\,\tilde{Y}_n=e^{-nt}\,\tilde{Y}_n$$

and therefore that

$$P_t Y_n = e^{-nt} Y_n$$

for all t > 0 and $n \ge 0$. As an immediate consequence, we now have that

$$\overline{P}_t f = \sum_{n=0}^{\infty} e^{-nt} (f, Y_n)_{L^2(m)} Y_n, \qquad t > 0 \text{ and } f \in L^2(m).$$

In particular, the Dirichlet form \mathscr{E} for $\{\overline{P}_t: t > 0\}$ is given by

$$\mathscr{E}(f,f) = \sum_{1}^{\infty} n(f,Y_n)^2_{L^2(m)}, \quad f \in L^2(m),$$

and so the corresponding gap λ is 1.

By combining Gross's analysis, Lemma (6) and the preceding, we now have the following result.

(7) THEOREM. Let $m(d\rho) = e^{-\rho} d\rho$ on $[0, \infty)$ and define P_t , t > 0, by (4). Then $\{P_t: t > 0\}$ is a conservative Markov semigroup which is symmetric in $L^2(m)$. Let $\{\overline{P}_t: t > 0\}$ be the semigroup of $L^2(m)$ -selfadjoint contractions determined by $\{P_t: t > 0\}$ and denote by \mathcal{E} the associated Dirichlet form. Then

$$1 = \inf \Big\{ \mathscr{E}(f, f) : f \in L^2(m), \|f\|_{L^2(m)} = 1 \text{ and } \int f \, dm = 0 \Big\},$$

On the other hand, the logarithmic Sobolev constant for $\mathscr{E}(i.e.$ the smallest α for which (2) holds) is 4.

REMARK. The semigroup $\{P_t: t > 0\}$ in Theorem (7) can be described directly in terms of the Laguerre operator

$$L = \rho \frac{d^2}{d\rho^2} + (1 - \rho) \frac{d}{d\rho} \quad \text{on } C_c^{\infty}((0, \infty)).$$

Indeed, $\{P_t: t > 0\}$ is the unique conservative Markov semigroup on $B((0, \infty))$ such that

$$P_t f - f = \int_0^t P_s L f \, ds, \qquad t \geqslant 0,$$

for all $f \in C_c^{\infty}((0, \infty))$. Thus there are several reasons for calling $\{P_i: t > 0\}$ the Laguerre semigroup. In this connection it is natural to suspect that the reason why, in this example, the logarithmic Sobolev constant α_0 and the spectral gap λ do not satisfy $\alpha_0 = 2/\lambda$ may have something to do with the way in which L degenerates at 0.

REFERENCES

- 1. L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061-1083.
- 2. E. Nelson, *Probability theory and Euclidean field theory* (G. Velo and A. Wightman, editors), Lecture Notes in Physics, vol. 25, Springer, Berlin and New York, 1974, pp. 94–124.
- 3. O. S. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Sturm-Liouville operators, J. Funct. Anal. 39 (1980), 42-56.
- 4. _____, Logarithmic Sobolev inequalities and the spectrum of Schrodinger operators, J. Funct. Anal. 42 (1981), 110-120.
- 5. _____, Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities, J. Funct. Anal. 42 (1981), 102-109.
- D. W. Stroock, Introduction to the theory of large deviations, Springer-Verlag, Berlin and New York, 1984.
- 7. F. Weissler, Two-point inequalities, the Hermite semigroup and the Gauss-Weierstrauss semigroup, J. Funct. Anal. 32 (1979), 102-121.
- 8. _____, Logarithmic Sobolev inequalities and hypercontractive estimates on the circle, J. Funct. Anal. 37 (1980), 218-234.
- 9. F. Weissler and C. E. Mueller, Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere, J. Funct. Anal. 48 (1982), 252-283.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, ARLINGTON, TEXAS 76019

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER, COLORADO 80209

Current address (D. W. Stroock): Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139