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SUMMING GENERALIZED CLOSED U-SETS FOR WALSH SERIES
KAORU YONEDA

ABSTRACT. A countable union of closed U-sets for Walsh series in certain gener-
alized sense is again a U-set in the same sense.

1. Introduction. Let p ~ X2_,i(k)w,(x) be a Walsh series. A subset E of the
dyadic group is said to be a U-set if

(1) Y a(k)w,(x) =0 everywhere except on E
k=0
implies that p is the zero series.
Wade [2] proved that if E,, E,,. .. are closed U-sets, then UY_ E, is also a U-set.
In this paper we shall generalize Wade’s theorem. Let &/ be a certain class of
Walsh series. A subset E of the dyadic group is said to be a U-set for «if p € «Zand
271
(2) lim ), a(k)w,(x) =0 everywhere excepton E
n—o ,_o
imply that p. is the zero series. We have already proved in [3] that when E is a closed
subset of the dyadic group, (1) holds if and only if (2) holds and

(3) p(k)=0(1) ask - oo.

Therefore a closed subset of the dyadic group is a U-set in the classical sense if and only
if it is a U-set for the class of Walsh series p. which satisfies (3).
When 7 satisfies the following conditions, we say that /satisfies the condition (L):
(i) a U-set for & is of measure zero;
(ii) if p € A, then
1 2ot
n Y a(k)w(x)
k=0

liminf =0 everywhere;

n— oo

(iii) if p and ' € o, then ap + o'y’ € for arbitrary real numbers a and o, where

=]

(ap + o) ~ Zo(au + o) (k)wi(x)

>~
]

™8

= X (ap(k) + o' (k))wi(x);

k=0
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(V) ifp € &, then

Y alk+j)w(x)ew forj=1,2,....
k=0

We shall prove the following theorem.

THEOREM 1. When a class of Walsh series < satisfies the condition (L) and if
E,, E,,... are closed U-sets for &, then UY_, E, is also a U-set for /.

2. Notations and lemmas. In this paper we shall use the following notations. Let I?
be the set of all 0-1 sequences, (1, f,,...), such that X7 _,¢, /2% = p/2". I? is called a
dyadic interval of rank n. For convenience, I,(x) denotes the dyadic interval of rank
n containing x. A dyadic interval is closed and open. We refer the details of the
dyadic group, Walsh functions, the operation + and so on to Fine’s paper [1].

LEMMA 2. When & satisfies the condition (L), if p € &/ and I is a dyadic interval,
then there exists a Walsh series p* € o/ which satisfies the following conditions:
2"-1

(i) Jim | % a(kwi(x) - Z p(k)w(x)[=0 onl,

-1
(ii) lim Y g*(k)w,(x) =0 uniformly everywhere except on I.
n—ow 4 _g
PrROOF. From the hypothesis, there exist an element of the dyadic group, x,, and
an integer N such that I = I,,(x,). Set

2N -1
B0 = 55 £ w(x(k +))
fork =0,1,.... Since !
271 27N (s+12M -1
Z p*(k)w,(x) = Z Z p*(k)w,(x)
k=0 s=0 k=s2VN
27N 1 2V -1
Uy ( 5 #0524 K ()
s=0 \ k=0

2n-N 12"-1{ 2V -1

Z Z Z w; (xo)p(s2N +k "'J)} woon 34 (X)

P WAL 2V -1

Z Z 2N w;(x) )» ”(52N+k+./) woon i (x)

k=0

21N _1 2V -1 2V -1

= Z Z 2N I(xo)w(x) )> ﬂ(52N+k+J) s2N+k(x)XW(x)

k=0

_ (s+1)2V -1
; (x0+x)}{ Z ﬂ(k)wk(x)}

k=s2N

2" -1
1

%EIWJ(XO + x)} { ii:ﬁ(k)wk(x)},

_ {L
2V S,
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and
23! . 2V forx € Iy(x,)
ij(xo+x)={ ’ vl
j=0 0, otherwise,

we have

27-1

2”1 R

Y (k)w,(x) = Y i(k)we(x), forxe Iy(xo),
k=0

k=0

0, otherwise.

It is obvious that p* satisfies the conclusion.

LEMMA 3. If a Walsh series p satisfies the following conditions:

21
(1) liminf | Y a(k)w,(x)|=0 a.e;
n-o | g
21
(i1) sup | Y p(k)w(x)|< oo everywhere except on a countable set;
n | k=0

-1
(iii lim inf 1 f(k)w,(x)|=0 everywhere;
n k
n— oo k=0

then p. is the zero series.
Lemma 3 is Theorem 3 in [3].

COROLLARY 4. When  satisfies the condition (L), if E is a closed U-set for &/ and I
is a dyadic interval which contains E, if a Walsh series p € ¥ satisfies the following
conditions:

271

(1) sup | Y. fa(k)w,(x)|< o everywhere on I\ E;
n | k=0
21

(ii) liminf | Y a(k)w,(x)|=0 a.e.onI;

nh— oo k=0
then

271

lim Y a(k)w,(x)=0 everywhereonE.

"R k=0

PROOF. Since E is a closed set, for x, € I'\ E, there exists an integer N such that
I,(xy) € Iand
(4) IN(X0)0E= .

Let p* be a Walsh series which is introduced in Lemma 2. Hence p* satisfies that

-1
(5) lim Y p*(k)w,(x) =0 everywhereon I5(x,).

n—o 4, _qo
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We shall prove that p* satisfies the conditions of Lemma 3. Since X3 i (k)w, (x)
and Y2 'a*(k)w,(x) are equiconvergent on Iy(x,), p* satisfies (5), (i) and (ii) of
Lemma 3. From (i) we have
271

L i*(k)we(x)

k=0

(6) sup

n

< oo everywhereon I (x,).

On the other hand from (5), (6) holds on I (x,). Hence (6) holds everywhere. From
the definition of i*(k) and the hypothesis, we have u* € «/. By Lemma 3, p* is the
zero series. Then, we have
27-1
lim Y j(k)w,(x)=0 everywhereon/\E.
n—o ;_o
Let p** be a Walsh series associated with I which is introduced in Lemma 2. Since
p** € /and the 2"th partial sums of p** and p are equiconvergent on I, we have
271
(7) lim Y Aa**(k)w,(x)=0 everywhere I excepton E.
n—o 4 _qo
On the other hand, (7) holds on 7¢. Hence (7) holds everywhere except on E. Since E
is a U-set for .7, p** is the zero series. Therefore, (7) holds everywhere on /. Since
the 2"th partial sums of p and p** are equiconvergent, the proof of Corollary 4 is
complete.

LEMMA 5. Let f,, n = 0,1,..., be a function which is continuous on the dyadic group,
then the following set
N = {x: limsup |f,(x)| = oo}
n— oo

is empty, countable or of the second category on itself.

The proof is due to [2].
3. Proof of Theorem 1. Set E = U2, E,. Let p satisfy
-1
(8) liminf | Y a(k)w,(x)|=0 everywhere excepton E.
n—oo | g

Each E, is a U-set for &, then from (i) of (L), E, is of measure zero. Hence E is of
measure zero. Consequently p satisfies (8) a.e. Set
- w}.

kg_ow)wk(x)

Since 2 't(k)w,(x) is a continuous function on the dyadic group, by Lemma S5,
three cases arise.

Now we shall assume that N is of the second category on itself. Set N, = N N E,.
Then, there exist a dyadic interval I and an integer i, such that NN I # & and
N, N Iisdensein N N I Since E, is closed, we have N; = N N E, . We shall prove
that

N = {x: lim sup

n—oo

9) NNI=E NNNICE NI
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It is obvious that NN I 2 E; N NN I If x € N N I, then there exists a sequence
of elements {x, }, such that x, € N, N I and lim,_, , x, = x. Since x, € N, and
x, € I, we have x, € E, . E, is closed, therefore we have x € E; . Hence we proved
the conclusion. It is obvious that E; N I'is a closed U-set for #/and that E;, N1 C I.
Assume that x ¢ E; N I. Thenx € N N I. Hence we have

21

T a(k)wy(x)

k=0

sup <o inI\(E,N1I)=I\E,.

n

By Corollary 4, we have
271
lim ) @(k)w(x)=0 everywhereon I.
n—o k=0
Hence we proved that
(10) NnlI=g.
(10) contradicts the assumption N N I # @. Therefore we have that N is not of the
second category on itself. The proof is complete.
A subset E of the dyadic group is said to be a U,-set for & [3] if p € &Zand
271
Y a(k)w(x)
k=0

(2) liminf =0 everywhere except on E
h— oo

imply that . is the zero series.
We can prove analogously to Theorem 1 the following theorem.

THEOREM 1'. When a class of Walsh series o satisfies the condition (L), if E,, E,,. ..
are closed U,-sets for o/, then UY_, E, is also a U;-set for /.
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