SUMMING GENERALIZED CLOSED U-SETS FOR WALSH SERIES

KAORU YONEDA

ABSTRACT. A countable union of closed *U*-sets for Walsh series in certain generalized sense is again a *U*-set in the same sense.

1. Introduction. Let $\mu \sim \sum_{k=0}^{\infty} \hat{\mu}(k) w_k(x)$ be a Walsh series. A subset E of the dyadic group is said to be a *U-set if*

(1)
$$\sum_{k=0}^{\infty} \hat{\mu}(k) w_k(x) = 0 \quad \text{everywhere except on } E$$

implies that μ is the zero series.

Wade [2] proved that if E_1, E_2, \ldots are closed U-sets, then $\bigcup_{k=1}^{\infty} E_k$ is also a U-set.

In this paper we shall generalize Wade's theorem. Let \mathscr{A} be a certain class of Walsh series. A subset E of the dyadic group is said to be a U-set for \mathscr{A} if $\mu \in \mathscr{A}$ and

(2)
$$\lim_{n \to \infty} \sum_{k=0}^{2^{n}-1} \hat{\mu}(k) w_{k}(x) = 0 \quad \text{everywhere except on } E$$

imply that μ is the zero series. We have already proved in [3] that when E is a closed subset of the dyadic group, (1) holds if and only if (2) holds and

$$\hat{\mu}(k) = o(1) \quad as \ k \to \infty.$$

Therefore a closed subset of the dyadic group is a U-set in the classical sense if and only if it is a U-set for the class of Walsh series μ which satisfies (3).

When A satisfies the following conditions, we say that A satisfies the condition (L):

- (i) a U-set for A is of measure zero;
- (ii) if $\mu \in \mathcal{A}$, then

$$\liminf_{n\to\infty} \left| \frac{1}{2^n} \sum_{k=0}^{2^n-1} \hat{\mu}(k) w_k(x) \right| = 0 \quad everywhere;$$

(iii) if μ and $\mu' \in \mathcal{A}$, then $\alpha \mu + \alpha' \mu' \in \mathcal{A}$ for arbitrary real numbers α and α' , where

$$(\alpha \mu + \alpha' \mu') \sim \sum_{k=0}^{\infty} (\alpha \mu + \alpha' \mu')^{\hat{}}(k) w_k(x)$$
$$\equiv \sum_{k=0}^{\infty} (\alpha \hat{\mu}(k) + \alpha' \hat{\mu}'(k)) w_k(x);$$

Received by the editors June 18, 1984.

1980 Mathematics Subject Classification. Primary 42C25.

Key words and phrases. Uniqueness, Walsh series.

(iv) if
$$\mu \in \mathcal{A}$$
, then
$$\sum_{k=0}^{\infty} \hat{\mu}(k + j) w_k(x) \in \mathcal{A} \text{ for } j = 1, 2, \dots$$

We shall prove the following theorem.

THEOREM 1. When a class of Walsh series $\mathscr A$ satisfies the condition (L) and if E_1, E_2, \ldots are closed U-sets for $\mathscr A$, then $\bigcup_{k=1}^{\infty} E_k$ is also a U-set for $\mathscr A$.

2. Notations and lemmas. In this paper we shall use the following notations. Let I_n^p be the set of all 0-1 sequences, $(t_1, t_2, ...)$, such that $\sum_{k=1}^n t_k/2^k = p/2^n$. I_n^p is called a dyadic interval of rank n. For convenience, $I_n(x)$ denotes the dyadic interval of rank n containing x. A dyadic interval is closed and open. We refer the details of the dyadic group, Walsh functions, the operation \dotplus and so on to Fine's paper [1].

LEMMA 2. When \mathscr{A} satisfies the condition (L), if $\mu \in \mathscr{A}$ and I is a dyadic interval, then there exists a Walsh series $\mu^* \in \mathscr{A}$ which satisfies the following conditions:

(i)
$$\lim_{n\to\infty} \left| \sum_{k=0}^{2^n-1} \hat{\mu}(k) w_k(x) - \sum_{k=0}^{2^n-1} \hat{\mu}^*(k) w_k(x) \right| = 0 \quad on \ I,$$

(ii)
$$\lim_{n \to \infty} \sum_{k=0}^{2^{n}-1} \hat{\mu}^{*}(k) w_{k}(x) = 0 \quad \text{uniformly everywhere except on } I.$$

PROOF. From the hypothesis, there exist an element of the dyadic group, x_0 , and an integer N such that $I = I_N(x_0)$. Set

$$\hat{\mu}^*(k) = \frac{1}{2^N} \sum_{j=0}^{2^N-1} w_j(x_0) \hat{\mu}(k + j)$$

for $k = 0, 1, \dots$ Since

$$\begin{split} \sum_{k=0}^{2^{n}-1} \hat{\mu}^{*}(k) w_{k}(x) &= \sum_{s=0}^{2^{n-N}-1} \sum_{k=s2^{N}}^{(s+1)2^{N}-1} \hat{\mu}^{*}(k) w_{k}(x) \\ &= \sum_{s=0}^{2^{n-N}-1} \left(\sum_{k=0}^{2^{N}-1} \hat{\mu}^{*}(s2^{N} + k) w_{s2^{N} + k}(x) \right) \\ &= \sum_{s=0}^{2^{n-N}-1} \sum_{k=0}^{2^{N}-1} \left(\frac{1}{2^{N}} \sum_{j=0}^{2^{N}-1} w_{j}(x_{0}) \hat{\mu}(s2^{N} + k + j) \right) w_{s2^{N} + k}(x) \\ &= \sum_{s=0}^{2^{n-N}-1} \sum_{j=0}^{2^{N}-1} \frac{1}{2^{N}} w_{j}(x_{0}) \sum_{k=0}^{2^{N}-1} \hat{\mu}(s2^{N} + k + j) w_{s2^{N} + k}(x) \\ &= \sum_{s=0}^{2^{n-N}-1} \sum_{j=0}^{2^{N}-1} \frac{1}{2^{N}} w_{j}(x_{0}) w_{j}(x) \sum_{k=0}^{2^{N}-1} \hat{\mu}(s2^{N} + k + j) w_{s2^{N} + k}(x) \times w_{j}(x) \\ &= \sum_{s=0}^{2^{n-N}-1} \frac{1}{2^{N}} \left(\sum_{j=0}^{2^{N}-1} w_{j}(x_{0} + x) \right) \left\{ \sum_{k=s2^{N}}^{(s+1)2^{N}-1} \hat{\mu}(k) w_{k}(x) \right\} \\ &= \left\{ \frac{1}{2^{N}} \sum_{j=0}^{2^{N}-1} w_{j}(x_{0} + x) \right\} \left\{ \sum_{k=s2^{N}}^{2^{N}-1} \hat{\mu}(k) w_{k}(x) \right\}, \end{split}$$

and

$$\sum_{j=0}^{2^{N}-1} w_j(x_0 \dotplus x) = \begin{cases} 2^{N}, & \text{for } x \in I_N(x_0), \\ 0, & \text{otherwise,} \end{cases}$$

we have

$$\sum_{k=0}^{2^{n}-1} \hat{\mu}^{*}(k) w_{k}(x) = \begin{cases} \sum_{k=0}^{2^{n}-1} \hat{\mu}(k) w_{k}(x), & \text{for } x \in I_{N}(x_{0}), \\ 0, & \text{otherwise.} \end{cases}$$

It is obvious that μ^* satisfies the conclusion.

LEMMA 3. If a Walsh series μ satisfies the following conditions:

(i)
$$\liminf_{n\to\infty} \left| \sum_{k=0}^{2^n-1} \hat{\mu}(k) w_k(x) \right| = 0 \quad a.e.;$$

(ii)
$$\sup_{n} \left| \sum_{k=0}^{2^{n}-1} \hat{\mu}(k) w_{k}(x) \right| < \infty \quad everywhere \ except \ on \ a \ countable \ set;$$

(iii)
$$\liminf_{n\to\infty} \left| \frac{1}{2^n} \sum_{k=0}^{2^n-1} \hat{\mu}(k) w_k(x) \right| = 0 \quad everywhere;$$

then μ is the zero series.

Lemma 3 is Theorem 3 in [3].

COROLLARY 4. When A satisfies the condition (L), if E is a closed U-set for A and I is a dyadic interval which contains E, if a Walsh series $\mu \in A$ satisfies the following conditions:

(i)
$$\sup_{n} \left| \sum_{k=0}^{2^{n}-1} \hat{\mu}(k) w_{k}(x) \right| < \infty \quad everywhere \ on \ I \setminus E;$$

(ii)
$$\liminf_{n \to \infty} \left| \sum_{k=0}^{2^n - 1} \hat{\mu}(k) w_k(x) \right| = 0 \quad a.e. \text{ on } I;$$

then

$$\lim_{n\to\infty} \sum_{k=0}^{2^n-1} \hat{\mu}(k) w_k(x) = 0 \quad \text{everywhere on } E.$$

PROOF. Since E is a closed set, for $x_0 \in I \setminus E$, there exists an integer N such that $I_N(x_0) \subset I$ and

$$I_N(x_0) \cap E = \varnothing.$$

Let μ^* be a Walsh series which is introduced in Lemma 2. Hence μ^* satisfies that

(5)
$$\lim_{n \to \infty} \sum_{k=0}^{2^n - 1} \hat{\mu}^*(k) w_k(x) = 0 \quad \text{everywhere on } I_N^c(x_0).$$

We shall prove that μ^* satisfies the conditions of Lemma 3. Since $\sum_{k=0}^{2^n-1} \hat{\mu}(k) w_k(x)$ and $\sum_{k=0}^{2^n-1} \hat{\mu}^*(k) w_k(x)$ are equiconvergent on $I_N(x_0)$, μ^* satisfies (5), (i) and (ii) of Lemma 3. From (i) we have

(6)
$$\sup_{n} \left| \sum_{k=0}^{2^{n}-1} \hat{\mu}^{*}(k) w_{k}(x) \right| < \infty \quad \text{everywhere on } I_{N}(x_{0}).$$

On the other hand from (5), (6) holds on $I_N^c(x_0)$. Hence (6) holds everywhere. From the definition of $\hat{\mu}^*(k)$ and the hypothesis, we have $\mu^* \in \mathscr{A}$. By Lemma 3, μ^* is the zero series. Then, we have

$$\lim_{n \to \infty} \sum_{k=0}^{2^{n}-1} \hat{\mu}(k) w_{k}(x) = 0 \quad \text{everywhere on } I \setminus E.$$

Let μ^{**} be a Walsh series associated with I which is introduced in Lemma 2. Since $\mu^{**} \in \mathcal{A}$ and the 2^n th partial sums of μ^{**} and μ are equiconvergent on I, we have

(7)
$$\lim_{n \to \infty} \sum_{k=0}^{2^n - 1} \hat{\mu}^{**}(k) w_k(x) = 0 \quad \text{everywhere } I \text{ except on } E.$$

On the other hand, (7) holds on I^c . Hence (7) holds everywhere except on E. Since E is a U-set for \mathscr{A} , μ^{**} is the zero series. Therefore, (7) holds everywhere on I. Since the 2^n th partial sums of μ and μ^{**} are equiconvergent, the proof of Corollary 4 is complete.

LEMMA 5. Let f_n , n = 0, 1, ..., be a function which is continuous on the dyadic group, then the following set

$$N = \left\{ x \colon \limsup_{n \to \infty} |f_n(x)| = \infty \right\}$$

is empty, countable or of the second category on itself.

The proof is due to [2].

3. Proof of Theorem 1. Set $E = \bigcup_{i=1}^{\infty} E_i$. Let μ satisfy

(8)
$$\liminf_{n \to \infty} \left| \sum_{k=0}^{2^{n}-1} \hat{\mu}(k) w_{k}(x) \right| = 0 \quad \text{everywhere except on } E.$$

Each E_i is a *U*-set for \mathscr{A} , then from (i) of (L), E_i is of measure zero. Hence E is of measure zero. Consequently μ satisfies (8) a.e. Set

$$N = \left\{ x \colon \limsup_{n \to \infty} \left| \sum_{k=0}^{2^{n}-1} \hat{\mu}(k) w_{k}(x) \right| = \infty \right\}.$$

Since $\sum_{k=0}^{2^n-1} \hat{\mu}(k) w_k(x)$ is a continuous function on the dyadic group, by Lemma 5, three cases arise.

Now we shall assume that N is of the second category on itself. Set $N_i = N \cap E_i$. Then, there exist a dyadic interval I and an integer i_0 such that $N \cap I \neq \emptyset$ and $N_{i_0} \cap I$ is dense in $N \cap I$. Since E_{i_0} is closed, we have $N_{i_0} = N \cap E_{i_0}$. We shall prove that

(9)
$$N \cap I = E_{i_0} \cap N \cap I \subseteq E_{i_0} \cap I.$$

It is obvious that $N \cap I \supseteq E_{i_0} \cap N \cap I$. If $x \in N \cap I$, then there exists a sequence of elements $\{x_k\}_k$ such that $x_k \in N_{i_0} \cap I$ and $\lim_{k \to \infty} x_k = x$. Since $x_k \in N_{i_0}$ and $x_k \in I$, we have $x_k \in E_{i_0}$. E_{i_0} is closed, therefore we have $x \in E_{i_0}$. Hence we proved the conclusion. It is obvious that $E_{i_0} \cap I$ is a closed U-set for $\mathscr A$ and that $E_{i_0} \cap I \subseteq I$. Assume that $x \notin E_{i_0} \cap I$. Then $x \notin N \cap I$. Hence we have

$$\sup_{n} \left| \sum_{k=0}^{2^{n}-1} \hat{\mu}(k) w_{k}(x) \right| < \infty \quad \text{in } I \setminus \left(E_{i_{0}} \cap I \right) \equiv I \setminus E_{i_{0}}.$$

By Corollary 4, we have

$$\lim_{n\to\infty} \sum_{k=0}^{2^n-1} \hat{\mu}(k) w_k(x) = 0 \quad \text{everywhere on } I.$$

Hence we proved that

$$(10) N \cap I = \emptyset.$$

(10) contradicts the assumption $N \cap I \neq \emptyset$. Therefore we have that N is not of the second category on itself. The proof is complete.

A subset E of the dyadic group is said to be a U_1 -set for \mathscr{A} [3] if $\mu \in \mathscr{A}$ and

(2')
$$\liminf_{n \to \infty} \left| \sum_{k=0}^{2^{n}-1} \hat{\mu}(k) w_{k}(x) \right| = 0 \quad \text{everywhere except on } E$$

imply that μ is the zero series.

We can prove analogously to Theorem 1 the following theorem.

THEOREM 1'. When a class of Walsh series \mathscr{A} satisfies the condition (L), if E_1, E_2, \ldots are closed U_1 -sets for \mathscr{A} , then $\bigcup_{k=1}^{\infty} E_k$ is also a U_1 -set for \mathscr{A} .

REFERENCES

- 1. N. J. Fine, On Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414.
- 2. W. R. Wade, Summing closed U-sets for Walsh series, Proc. Amer. Math. Soc. 29 (1971), 123-125.
- 3. K. Yoneda, On generalized uniqueness theorems for Walsh series, Acta Math. Acad. Sci. Hungar. 43 (1984), 209-217.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OSAKA PREFECTURE, SAKAI, OSAKA, JAPAN