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A SOLUTION OF ULAM'S PROBLEM ON RELATIVE MEASURE

TIM CARLSON1

Abstract. Suppose stfis a collection of subsets of the unit interval and, for A e s/,

\iA is a Borel measure on A which vanishes on points and gives A measure 1. The

system pA (A e jtf) is called a coherent system if pA(C) = nA(B)pB(C) whenever A

dSdC are in .Wand all terms are defined. The existence of a coherent system for

the collection of perfect sets is shown to be independent of Zermelo-Fraenkel set

theory with the axiom of dependent choices.

In [4, problem 7, pp. 77-78] Ulam asked how larges/can be if it is the domain of

a coherent system. Assuming the axiom of choice, si can be all sets which are not

ruled out by some obviously necessary restriction; for example, si cannot contain

any countable sets. By restricting Lebesgue measure, a coherent system for the

collection of sets of positive Lebesgue measure can be constructed (without using the

axiom of choice). In particular, there is a coherent system on the collection of open

sets. Without assuming the axiom of choice, the most natural question is whether a

coherent system exists for the collection of perfect sets. The main theorem of this

paper states that, assuming the principle of dependent choice, rather than the full

axiom of choice, one cannot prove the existence of a coherent system for the

collection of perfect sets. The proof of the main theorem also shows that the usual

axioms for set theory, including the axiom of choice, are not sufficient to prove there

is a definable coherent system on the collection of perfect sets.

1. Introduction. Most of the notation in this paper is standard, but some unusual

liberties, which I will now list, are taken. For unfamiliar notation not discussed here,

consult [2].

I will usually work with the Cantor space, rather than the unit interval, and will

use the customary representation of it as "2 with the product topology, where 2 is

given the discrete topology. 2<w is the collection of all finite sequences of O's and l's.

A perfect tree is a nonempty subset A of 2<" such that: (1) if v e A and t is an

initial segment of n, then t e A; (2) if n e A then there are extensions nx and n2 of tj

in A which disagree at some point. There is a natural correspondence between

perfect subsets of "2 and perfect trees, and I will often identify a perfect set with its

tree. By a finite tree I will always mean a finite subset t of 2<w which satisfies (1) and
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which has the additional property that if n is the height of t (i.e. n is the length of the

longest element of t) then every element of t has an extension in / of length n. The

elements of t of length n are called maximal nodes. If t and s are finite trees, then t is

an end extension of s if 5 ç t and every element of t — s extends a maximal node of

s. If T is either a finite tree or a perfect tree and r/ g T, then T [ n is defined to be

{ t g F: either TCrjorTjCr}.

Suppose y4 is a perfect tree and p is a Borel measure on A, i.e. on the perfect

subset of the Cantor space corresponding to A. If t ç A is a finite tree, then t

determines a clopen subset U of the corresponding perfect set. I will write p(t) for

p(U). As a special case, p(-q) is p({x e"2: v ç x}) if tj g ^4. Also, if 5 is a perfect

tree and B Q A,l will write p(7?) for the measure of the perfect set corresponding to

B. So p C A is the function with domain A with (¡i \ A)(n) = ¡x(v). A well-known

fact is that p is completely determined by p[ A. In other words, if v is a Borel

measure on A with »< f A = p f /4, then v = p. This can be shown withoput using the

Axiom of Choice.

Finally, a few words on forcing notation. If M is a model of ZFC and F is a poset

in M, I will write Mp for Mm, where 38 is the Boolean algebra of regular open

subsets of P. Elements of Mp will be denoted by underlined symbols with one

exception. Ifxetf there is a canonical name for x in Mp; I will abuse notation and

use x for its own canonical name. I will sometimes neglect the superscript on objects

constructed in M. This happens for example in §2 where, after defining a particular

poset Q*Q(p., r), I continue to write Q*Q(p, r) for (Q*Q(jx, r))M. Mp 1= <p ab-

breviates p II- w for all p g P.

2. Preliminaries. This section contains the basic lemmas and definitions to be used

in the next section in the proof of the main theorem.

Definition 1. A poset P is homogeneous if for all p, q g P there is an automor-

phism rp of P such that <p(p) and q are compatible.

The next lemma is well known (see exercise 25.9 in Jech [2]).

Lemma 1. Assume M is a model of ZFC and P is a homogeneous poset in the sense of

M. If (p(vx,... ,vn) is a formula and xx,... ,xn G M, then either Mp 1= <p(xx,... ,xn)

or Mp 1= -, cp(xx,...,xn).

Lemma 2. Assume M is a transitive model of ZFC, k is an uncountable cardinal in

the sense of M, and P is the poset for adding k Cohen reals. If G ç P is M-generic and

s is a countable sequence of ordinals in M[G], then M[G] = M[s][H] for some H çz P

which is M[s]-generic.

Sketch of proof. There is an X ç k which is countable in the sense of M

such that i G M[G n Px], where Px= {p g P: domain(p) ç X). If M[s] =

M[G n Px], then M[G] is a generic extension of M[s], via PK x-> which is isomor-

phic to P. Otherwise, M[G C\ Px] is a generic extension of M[s] by a single Cohen

real, and M[G] is a generic extension of M[s] by a single Cohen real followed by a

generic extension, via FK_ x, which amounts to a generic extension via P.       D
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Definition 2. Q is the poset which adds a perfect tree with finite conditions: the

conditions of Q are finite trees which are ordered by end extension.

Definition 3. Assume A is a perfect tree, p is a Borel measure on A, and r is a

rational number. Q(p, r) is the poset which adds a perfect subtree of A of measure r

with finite conditions: the conditions are the finite trees t, with ¡i(t) > r, which are

ordered by end extension.

Recall that if F is a countable poset then a Cohen real will add a generic filter for

P; for example, a Cohen real will add generic filters for Q and Q(n, r).

Lemma 3. Assume M is a transitive model of ZFC and A is the name in M for the

perfect tree which Q adds. 7/p G M®, M@ l="p is a Borel measure on A", and r is a

rational number, then

(1) {(t, s): t, s G Q, s C t, t II- "p(i) > r" and t and s have the same height) is

dense in Q*Q(n, r); and

(2) M^*^^'r) 1= "B is M-generic for Q", where B is the name for the perfect tree

which Q(p, r) adds.

Proof. Let R be the set of conditions from (1). I will only prove (2). Assume

D g M is dense in Q. The following claim suffices.

Claim, {(t, s) g R: s g D] is dense in g*ß(p, r).

Assume (u, v) g R. Choose s < v with i g D and let t = (tj G 2*": r/ extends a

maximal node of u, and if n extends a maximal node of v then tjeiju«, where n

is the height of s. Note that (t, s) g R since í II- "p(s) = ft(iz) > z-".    D

3. The main theorem.

Theorem. 7/ZF is consistent, so is ZF + DC + "there is no coherent system for the

collection of perfect sets ".

The rest of this section is devoted to proving the theorem.

Assume M is a transitive model of ZFC, k is an uncountable cardinal in the sense

of M, P is the poset for adding k Cohen reals, and G çj P is M-generic. Let S be the

collection of sequences of ordinals of length « in M[G] and define A' to be

HOD(5)W[C1. As in [3], N is a model of ZF + DC and "TV n M[G] ç TV. Let si

be the collection of perfect trees in TV. I will show that in TV there is no coherent

system on si from which the theorem follows.

Notice that si is also the set of perfect trees in M[G] and any set of reals in

M[G] which is Borel in M [G] is also in TV and Borel in TV.

Claim 1. If A e.si, p g M[G] and M[G] 1= "p is a Borel measure on A", then

p g TV.

Proof, p can be reconstructed from p ¡ A which is in TV.    D

The statement "¡iA (A &si) is a coherent system" is absolute between TV and

M[G\; so, by Lemma 1, it suffices to show there is no coherent system ¡xA (A g si)

in the sense of M[G] which is in OD(5')M[C1.

The rest of the proof is by contradiction. Assume that ¡iA (A ^ si) is coherent in

the sense of M[G] and in OD(S)MlG]. Let <b(x, y, z) be a formula and jeS such
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that p = ¡j.a iff M[G] 1= $(A, p, s ). By Lemma 2 of §1,1 may assume that ? g M

(otherwise conclude the argument with M replaced by M[s]).

Claim 2. If A g si then \iA\ A ^ M[A].

Proof. Let 77 ç F be M [^-generic, with M[G] = M[^][77] by Lemma 2 of §1.

If r; g A, p is rational, and pA(i]) < p, then M[A]P \= "if p is unique such that

<&(A, p, s), then (i(n)^p". So, p^ C A can be defined in M[^4] by pA(r\)

= inf{p g Q: M[A]P \= "if pis unique such that $(A, p, s), thenp(rj) < p"}.    □

Claim 3. There is a name v G MQ such that, whenever A G M[G] is M-generic for

Q, pA\ A is the interpretation ofv using the M-generic filter on Q associated with A.

Proof. I will show MQ t= "there exists v such that M[A]P 1= 'if <t>(A, p, s) then

p\ A = v"\ where A is the name for the perfect tree which Q adds. This is done by

showing that the collection of conditions which force this statement is dense.

Suppose t g Q. There is an M-generic filter J in M[G] which contains / (see the

remark in §2 after Definition 3). Let A be the corresponding perfect tree, i.e., the

union of the filter. By Claim 2, pA f A g M[A]. Let 77 ç F be M[^]-generic with

M[A][H] = M[G]. M[A][H] \= "if ®(A, p, s) then p \ A = v", where v = p \ A.

Therefore M[A] 1= "there exists v such that, for somep g P,p l= 'if <S>(A, p, ?) then

p r /l = z>"\ By the homogeneity of F, M[yl] 1= " there exists v such that M[ A]p 1= 'if

$>(A, p, ?) then ¡i\ A = v'". There is a condition s g J such that s II- "there exists

p such that M[A]P 1= 'if <&(A, p, ? ) then p { A = v'". s is compatible with t since

both are in J.        D

Let p g Me be the measure on A generated by v in MQ, and let Br be the name

for the perfect tree added by Q(jx, r) in MQ'Q^-r\

Recall from Lemma 3 of §2 that Rr = {(t, s): t, s g Q, s ç t,t II- "p(s) > r " and

s has the same height as t} is dense in Q*Q(p, r).

Claim 4. Assume t, s G Q have the same height, s Q t, w is the stem of s, and tj^ 0

and Tj~ 1   are  in  s.  If t II- "p(j f tj"0) < u-(s { tj~ 1)",  rTzezz j lh"p(.y ï ipO) <

p(5 r 17" i).

Proof. Assume / Ih "p(s t tj" 0) < p(s f 17" 1)" and j^'>(s r •"" 0) <

p(j T ij~ 1)" in order to reach a contradiction.

Choose Sj < s such that ^ II- "p(s I r/~0) > p(s f tj" 1)", and let tx = ? U (t g

2*": t extends a maximal node of z, and if t extends a maximal node of s then

t g j d 1}, where zz is the height of sx. Both sx and tx force "p(s ï tj~ 0) = p(íj ï tj~

0) and p(í Í T)"l) = ¡x(sx { tjI)", so

Í! II- "p(sx r 77^0) < p(sx { -rj- 1)"    and    ^ Ih "p^ r iJ^O) > p(^ f tj~ 1)".

Choose t2 < Zj and rational numbers rx, r2 and e such that z2 II- "r, < p(jx f rpO)

< rx + e and r2 < n(sx [ v" 1)" and rx + 2e < z-2. Define s1 = î,U{aË(2:o ex-

tends a maximal node of s,}. As above,

í2 ii- "p(i2 r tto) > p(í2 f «~i)"
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and

t2 Ih "rx < p(i2 r 7,-0) < rx + e and r2 < p(i2 \ 7,-1)".

Notice that (t2, s2) g Rr, where r = rx + r2.

Since Rr is countable, there is an M-generic filter/ on R r in M [G] which contains

(r2, s2). Let A and F be the interpretations of A and Fr via /. Both A and B come

from M-generic filters on Q by Lemma 3 of §2. Let pA and ¡xB be the corresponding

interpretations of p. By the definition of p, p^ extends p-4 and pfi extends pB.

p„(F r tTO) < p^i r 7,-0) <rx + e<r2- e = r-(rx + e)

= p^F) -(r, + e) < ¡xA(B) - pA(B \ 7,-0) = p^T? f 7,-1).

On the other hand,

pA(B r Tj-o) = pA(B)pB(B r 7,-0) = p/)(F)pfi(^2 r tro)

> va(b)ilb(s2 r 7,-1) = M/4 (f)ps(f r 7,-1) = iiA(B r 7,-1),

which is a contradiction.       D

To conclude the proof of the theorem, choose t, s g Q of the same height with

s ç t such that t Ih "p(s f tj- 0) and p(s f 77- 1) are positive", where 77 is the stem of

í. This is possible since Me Ih "p vanishes on points". Now choose tx < t and sx < s

of the same height such that sx ç tx and tx Ih "0 < p(sx [ 7,-0) < p(sx T 7,-1)". By

Claim 4,

Sj ih"p(7,-o) = p(i1r 77-0) <p.(s1 r t,-i) = p(t,-i)".

Finally, choose t2 < ij  and i2 < si OI  me same height such that s2 Q t2 and

i2 Ih "p(s2 T 7,-0) > n(s2 Í 7,- 1)". Using Claim 4 again with 0 and 1 reversed,

s2ih"p(t,-o) = p(i2r 7,-0)>p(i2r 7,-1) = p(t,-i)",

which is a contradiction, since s2 < s1.

4. Ulam's problem with the Axiom of Choice. Assume p is a Borel measure on the

unit interval. I use p* for the outer measure defined from p: for A ç [0,1],

p*(X) = inf{p(T): Y is Borel and X <z Y). Recall that for any lç[0,l], p*

determines a Borel measure v on X by v(Y) = p*(Y) for Y Borel in A". A subset X of

the unit interval is of universal measure zero if \>.*(X) = 0 for all Borel measures p.

The Hausdorff gap [1] is an example of an uncountable set of universal measure

zero.

Assuming the Axiom of Choice, we see, by the simple proof below, that there is a

maximal family si for which a coherent family exists. Note that if A is a subset of

the unit interval which is of universal measure zero, then A cannot be in the domain

of a coherent system.

Theorem (ZFC). There is a coherent system pA (A g si), where si consists of all

subsets of the unit interval which are not of universal measure zero.
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Proof. Let va (a g 2") list all Borel measures on the unit interval. For A & si

define pA by pA(B) = v*(B)/v*(A), where a is the least ordinal such that v*(A)> 0.

D
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