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EQUATIONAL THEORY OF POSITIVE NUMBERS

WITH EXPONENTIATION

R. GUREVIC

Abstract. A. Tarski asked if all true identities involving 1, addition, multiplication,

and exponentiation can be derived from certain so-called "high-school" identities

(and a number of related questions). I prove that equational theory of (N, 1, +, •, î )

is decidable (a f b means ah for positive a, b) and that entailment relation in this

theory is decidable (and present a similar result for inequalities). A. J. Wilkie found

an identity not derivable from Tarski's axioms with a difficult proof-theoretic

argument of nonderivability. I present a model of Tarski's axioms consisting of 59

elements in which Wilkie's identity fails.

1. This note is related to "Tarski's high school algebra problem" and a number of

other model-theoretic questions concerning exponentiation of positive real numbers

and positive integers (see e.g. [1]). Let a î b = ah for positive a, b, and L = the set of

terms in signature (1, +, -, Î). As always, R+ is the set of positive reals. We give

proofs of decidability for two problems about identities, and we also present a

59-element model in which Tarski's "high school algebra" identities are true, while

Wilkie's identity is false.

Our first result gives a new proof of a theorem of A. Macintyre [3] (proved for

terms in one variable by Richardson [4]).

Theorem 1. Let X be any subset of R+ containing 1 and closed under addition,

multiplication, and exponentiation. Then the set of valid equalities T = {tx = t2\tx, t2

g L, X \= tx = t2} is decidable and does not depend on X.

The proof is based on the following lemma, which is proved in §§2 and 3.

Lemma 1. There is a recursive function M: L X L -* N such that, for any

tx(r, s), t2(r, s) G L,for any positive real (values of)r if

card(i g R+\tl(r, s) = t2(r,s)} > M(tx, t2)

then Vi G R + : tx(r, s) = t2(r, s).

Proof of Theorem 1. Proceed by induction on the number of variables: Vs g X:

tx(f, s) = t2(r, s) is equivalent to &^_xtx(r, k) = t2(r, k), where M = M(tx, t2).
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Theorem 2. Let S = the set of finite subsets of T. Then the set

{(s, tx, t2) g S X LX L\V = 1, jc1 = lx = xl = x,s h tx = t2)

is decidable.

The proof follows immediately from the next lemma, which is proved in §4.

Lemma 2. There is a recursive function B: L X L -* N such that, for any tx, /2 G L

and any set s of valid equalities, we have lx = 1, xl = lx = xl = x, s W- tx = t2 if and

only if t£ tx = t2 in a model oflx = 1, x1 = lx = xl = x, s of cardinality < B(tx, t2).

This research was provoked by [5], which provided an axiom system adequate for

equational theory of (N, 1, +, -, Î). The idea to bound the number of real solutions

of some transcendental equations via chains of first order differential equations is

due to A. G. Khovanski. I learned it from O. Viro, who partly reproduced for me

talks given by A. G. Khovanski and V. I. Arnold; [2] is related to, but not used in,

this paper.

2. A differential algebraic construction. Recall that D[X] = the ring of polynomi-

als in variables g X with coefficients in D, D( X) = the field of rational functions in

variables G X with coefficients in D for any commutative ring D without zero

divisors, denote also D[ 0 ] = D, D( 0 ) = the field of quotients of D.

Let (Xn}n be disjoint sets and K = Z(}JnXn). Let < be a linear order on U„Xn

such that m < v for u g Xn, v g Xn + X. Define a relation < on K as follows. Let

tx, t2 g K, t2 £ Q and y be the last variable of t2, y g Xn. Put tx<t2 if all variables

of tx are < y, each x g Xn occurring in tx occurs in t2, and either

(1) tx g Z({x\x<y })[y] 9i2,

(2)tx, z2g Z({x\m <^})[^]anddegv(i1)< degv(/2), or

(3) h = Pmym + ■ ■ ■ + Fo> h = qmym + ■ •; + €o> with y not occurring in p/s

and q/s and pm<qm.

It is easy to see that < is well-founded.

Let a,b,c be functions \J„X„ -> Z[\J„Xn] such that Vx: ax * 0 (I will use

ax,bx,cx as alternatives for a(x), b(x), c(x), respectively) and a(Xn) U b(Xn) L)

c(Xn) cz Z[\}k<nXk] for any zz. (In particular, ax, bx, cx<x for any x and a(X0) U

b(X0) U c(XQ) ç Z.) Define a differentiation on K, putting x' = bx • x/ax + cx/ax

forx g \J„X„.

Proposition. For any t g K - Q there are A,, Bt, C,<t, A, # 0, such that A, ■ t' =

Br ■ t + C,. Moreover, let W be a subset of Z[önXn] closed under multiplication,

1 g W, WD Z[{x\x ^y}]Q(Wn Z[{x\x < y}])[y]for anyy, and W 2 aQJnX„),

and let R = [u/v\u g Z[\¡„Xn], v g W} ç K. Then one can choose Ate. W and

B„ C, G R for t G R.

Proof. Let y be the last variable of t. Let í í Z({x\x < y})[y], t = P/Q, where

P, Q are polynomials, deg,.(0) > 0, and Q g W for / g R. Then put A, = Q2,

Bt = 0, C, = P' ■ Q - P ■ Q'. For other cases, proceed by induction on <. Let

t = py" + Q, degv(g). If p £ Q take Ap, Bp, Cp according to inductive assumption

and put A, = Ap,B, = Bp + nApbv/ay, and C, = Cpy" + (npApcy/ay)yn + Ap ■ 0/

- (Bp + nApBt,/av)Q. lîp € Q put Ap = 1, Bp = Cp = 0 in the above formulae.
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One can easily generalize this proposition by taking any commutative differential

ring without zero divisors instead of Z to obtain

Corollary. Let F 2 F0 be differential fields. Put F„ + 1 = {/ g F|3a, b, c g Fn;

/' = bf/a + c/a). Then U„F„ is a differential subfield of F. If F is a function field

closed under superposition and F0 is the field of constants, then UnF„ is also closed

under superposition.

O. Viro attributed this result for a function field F to A. G. Khovanski.

Neither the generalizations of the Proposition nor the Corollary will be used.

3. Proof of Lemma 1.1 am going to apply the Proposition of §2, so I will introduce

notation corresponding to that of §2 (except Corollary).

Put W = the set of (1, +, -, î)-terms in variables r, s. Define h: W -» N as

follows: h(u) = 0 if « is a polynomial with respect to s; for other cases

h(u + v) = h(uv) = max(h(u), h(v)),h(u\ v) = 1 + max(h(v),l + h(u)).

Put X0 = {s} U {(1, +, -, î)}-terms in variables r and Xn = the set of expressions

of the forms u î v and ln(vv), where u, v, w g W and h(u î v) = n = 1 + h(w) for

n # 0. Terms g W will be regarded as elements of Z[\J„Xn]. Compare the situation

with that of §2: We have disjoint {X„}„, W ç Z[X)„Xn] is closed under multiplica-

tion, and it is quite easy to fix a linear order < on U„Xn such that x < y whenever

x g Xn, y g Xn + X for some n, and WO Z[{x\x ^ y}] ç (WO Z[{x\x < y}])[y]

for any y. Put also R = {u/v\u g Z[\JnXn], v G W) ç K, K = Z(\J„X„). Elements

of K can be regarded as real analytic functions in variables 7, s; then elements of R

are defined for all positive r, s.

Claim 1. There are a, b, c: \J„Xn ->» Z[\j„X„] such that a(\J„X„) ç W, a(X„) U

b(Xn) U c(X„) Q Z[Vk<nXk] for any n, and dx/ds = bx ■ x/ax + cx/ax for any

xe\)„X„.

Proof. Proceed by induction on zz, x g Xn. If n = 0 then either x = s with

ax = 1, bx = 0, cx = 1, or x does not depend on s, so av = 1, bx = cx = 0. Let zz # 0.

We have

7-(kíü) = t- exp(z; • ln(w)) = («Î v) ■   -5- • ln(«) = - • -r-'j    and
,   ,      05 di \ di u     ds J

3   1   ,    ï       1-¿*
ln(vv) = — • —.

9i w    3í

Since u, v, w G Z[U^<„Arn] we have

/.n ^w _ v-> 3w    3jsc       8t; _ y, 3f    3jc       3w _ ^-, dw    dx

^ ) 37_^3x'"o7'    "o7_^3jc'"37'    ~ds~ ̂  "o7 ' 37 '
AT A V

where the x's are elements of Uil<„A'/l occurring in u, v, w and 3/3x are the usual

derivations in the ring of polynomials. Since a, b, c are already defined for x 's,

dx/ds = bx ■ x/ax + cx/ax, one can substitute this expression for dx/ds in (5) and

substitute obtained expressions for du/ds, dv/ds, dw/ds into (4); reducing fractions

to common denominator one then obtains auîv, buîv, cuU, = 0 and aln(H), bXn(w) =

0, Cln(wy
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Claim 2. For any / g R — Q there is a finite sequence t0 g Q, t1,... ,tn = t of

elements of R such that for any m, 1 < m < zz, dtm/ds = (ßtm + tm_x)/a for some

ß g R, a G H/.

Proof. Apply the Proposition of §2 with a, b, c of Claim 1; put/0 = t,fm+x = Cfm.

Since < is well-founded, there will be n such that /„ g Q. Put tm =/„_m. Then

dtm/ds = (ßlm-tm + tm_x)/A,m.

Claim 3. Let tn,... ,t0 be a sequence of elements of R satisfying Claim 2. Then for

any k, 0 < k < n, either tk = 0 or zA has < /c zeros in R+ as a function of s when F

assumes arbitrary positive real values.

Proof. If/' = pf + q on an interval ç R, then

/= expNpj • I Const + jq ■ expi-Jpjj,

whence either / = 0 or / has no zeros (for q = 0), or zeros(/) < 1 + zeros(g) by

Rolle's theorem applied to Const + jq ■ exp(-jp). So either tk = 0 or tk has no

zeros (for tk _ x = 0), or

zeros(z\) < 1 + zeros(tk_x/a) = 1 + zeros(tk_x)    oneF + .

Now, in order to bound card{i g R+ \tx(r, s) = t2(r, s)}, put t = tx — t2 and

apply Claims 2 and 3.

Proof of Lemma 2. Define w: L -» N as follows: w(l) = 1, w(any variable) = 2,

and ^(ijDz^) = w(tx)D w(t2) for D = +, -, or Î. Let bx(m) = 1, b2(m) = m + 1,

and bk + x(m) = bk(m) + 3 ■ (bk(m))2 for k > 2 and any m. I will show that

B(tx, t2) = bk(m) + 1, where k = n\ax(w(tx), w(t2)) and m is the total number of

variables occurring in tx, t2, satisfies Lemma 2.

Let s be any subset of T and £ = iU {lx = 1, x1 =» x, 1 • x = x, x • 1 =x}. Let

F be the set of (1, +, •, î)-terms in variables vx,... ,vm modulo equivalence of terms

tx, t2 whenever E h tx = t2. Since the equalities in F are valid in N, by assumption,

we may regard w as a function F -» N. It is easy to see that for every integer j,

(pGF|w(p)<y'} has < bj(m) members. (Each member of F is represented by a

term which does not contain any 1 ; the functions +, • and î are strictly increasing

on arguments > 1.) Let tx, t2 be (1, +, -, î)-terms in variables vx,...,vm such that

F h tx = t2. Then tx # t2 in P. Let K = max(w(tx), h>(z2)) and define a congruence

on F by px = p2 iff px = p2 or w(px), w(p2) > K + 1. Then p/= still satisfies

tx # z2 and has < B(tx, t2) = bk(m) + 1 members.

An important set F of identities which are valid in N is the following set of " high

school algebra" identities:

(Tl) V = 1, x1 = lx = xl = x,

(T2) x + y = y + x, xy = yx,

(T3) x + (y + z) = (x + y) + z, x(yz) = (xy)z,

(T4) x(y + z) = xy + xz,

(T5)x>+* = xv-xz,

(T6)(xy)z = xz ■ yz,

(Tl)(xy)z = xyz.
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Tarski raised the question of whether or not every identity valid in N can be

derived from this set. Wilkie answered this question negatively, by showing that the

following identity is true in N but is not derivable from Tarski's axioms:

(w) ((x + i)-v +(x2 + x + iyy -{(x3 + i)y+(x4 + x2 + iyy

= ((jc + i)v +(x2 + x + iyy -{(x3 + iy +(xA + x2 + iyy.

Wilkie's proof of nonderivability was difficult and made use of proof theory. In the

remainder of this paper I will present a model of Tarski's axioms which consists of

59 elements and in which Wilkie's identity does not hold.

Note that we are not applying Theorem 2; the model given here provides a

separate verification that (W) cannot be derived from Tarski's identities. Note also

that when x = y = 2, the value of the terms in (W) is about 109. The bound given in

the proof of Theorem 2 for the size of a finite model in this situation is approxi-

mately (32)10 . In constructing the 59-element model presented below, we are guided

by the same idea as in the proof of Theorem 2, but we set the variables equal to 1

instead of 2. This requires some intricate changes in the definition of the model, and

the verification that it is a model of Tarski's identities becomes more difficult.

The 59 elements of the model consist of the constants 1,2,..., 26 together with the

two terms which appear on either side of Wilkie's identity (W) and the following

thirty-one other terms:

x1, x2, x3, xA, y;

1 + x\ 1 + x2, 1 + x3,1 + x\ x1 + x2, xl + jc3, x1 + xA, x2 + xA;

(i + xy,(i + xy,(i + x3y,(i + x3y;

i + x + x2, (i + x + x2y, (i + x + x2y, i + x2 + xA, (i + x2 + xAy,

(1 +x2 + xA)y;

(i + xy +(i + x + x2y, ((i + xy +(i + x + x2yy-,

(i + x3y+(i + x2 + xAy, (a + x3y +(i + x2 + xAyy-,

(1 + A-)1' +(1 +x + x2)y, ((1 + x)y +(1 + x + x2)y)x;

(i + x3y+(i + x2 + xAy,((i + x3y +(i + x2 + xAyy

(Here, for readability, we have used the usual superscript notation for exponentia-

tion.) Let/, g denote the terms in (W), so the identity has the form/ = g.

The operations in the model will be defined so that if the expressions on either

side of (W) are evaluated in the model, treating x and y as elements of the model,

then the values will be the terms / and g. Since these are distinct in the model, it

follows that (W) is false.

Now we proceed to define the operations in the model. For each element t of the

model, let |r| be the integer value which results from interpreting í in N with

x = y = 1.

(I) If t, u, v are elements in the model, D is +, •, or î, and if ID« = v is a valid

identity in N, then we define tUu to equal v in the model.

(II) If tUu is not defined by (I), then we define

tUu = min(26,|r|D|«|),
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except in the special cases listed below:

(i) special cases for addition:

l+y=y+l = l+x3;    x+y=-y + x = x + x3;

(ii) special cases for multiplication:

x' ■ xj = xA   when 1 < i, j < 4 and i + j > 4;

x' . y = y . x' = xA    when 1 < z^ 4, -y • -y = xA;

x-(l + xA) = (1 + xA) ■ X = x + xA;

x -(x + xA) = (x + xA) ■ x = x2 + xA;

x2-(l + x3) = (l+x3)-x2 = x2 + xA;

x2  (1 + xA) = (1 + xA) ■ x2 = x2 + xA;

(iii) special cases for exponentiation (u is any element of the model):

(jc')" = xmm(4'/|"l),   where 1 < i < 4;

y" = x     if u is not 1.

It remains to show that Tarski's axioms (T1)-(T7) are true in this model. This is

done by direct verification, which will not be given here. There are not too many

cases which require detailed analysis, since tUu is often merely |/|D |u|.

Remark 1. Wilkie's identity contains two variables. Substituting for y a suitable

term in x, one can obtain an identity in x which is only valid over N but cannot be

derived from Tarski's axioms. Moreover, finite models for Tarski's axioms in which

such identities are false can be obtained by modifying the 59-element model given

here. For example, this can be done when y is replaced by xx; the resulting model

will again have 59 elements.

Remark 2. Applying ideas similar to those which are used to prove Theorem 2,

one can prove

Theorem 3. Let J be the set of inequalities of (1, +, -, \)-terms,j = {ix < t2\tx, t2

g L] and S(J) the set of finite subsets of J. There is a recursive function A:

S(J) X L X L -* {yes, no} such that if s g S(J) consists of valid inequalities then

A(s, tx, t2) is the answer to the question whether s, xl = lx = xl = x, lx = 1 h tx <

t2. One can add, e. g., rules x\y,p < q h xp < yq, and x^y,p^qr-x+p^y + q

to the usual (substitution and monoticity) rules—the result shall remain valid.

Note that inequational theory of(N;l, +, -, î, < ) is undecidable.
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