ON DENSE SUBSETS OF THE MEASURE ALGEBRA

J. CICHOŃ, A. KAMBURELIS AND J. PAWLIKOWSKI

ABSTRACT. We show that the minimal cardinality of a dense subset of the measure algebra is the same as the minimal cardinality of a base of the ideal of Lebesgue measure zero subsets of the real line.

0. Introduction. Let (P, \leq) be a given partial ordering. A subset $D \subseteq P$ is called dense if for any $p \in P$ there exists $d \in D$ such that $d \leq p$. A subset D is called upward dense if D is dense in (P, \geq) . Let $\Delta(P, \leq)$ denote the minimal cardinality of a dense subset of (P, \leq) .

Recall that with any boolean algebra \mathscr{C} we can associate a natural partial ordering $\leq_{\mathscr{C}}$. Let 0 and 1 denote the minimal and the maximal elements in this ordering. A dense or upward dense subset of \mathscr{C} is a subset of $\mathscr{C} \setminus \{0,1\}$ which is dense or upward dense with respect to $\leq_{\mathscr{C}}$. Note that

$$\Delta(\mathscr{C} \setminus \{0,1\}, \leqslant_{\mathscr{C}}) = \Delta(\mathscr{C} \setminus \{0,1\}, \mathscr{C} \geqslant).$$

We call this cardinal number $\Delta(\mathscr{C})$.

Let \mathscr{I} be an ideal of subsets of a set X. A base of \mathscr{I} is an upward dense subset of (\mathscr{I}, \subseteq) . Let $\Delta(\mathscr{I}) = \Delta(\mathscr{I}, \supseteq)$. \mathscr{I} is a σ -ideal if for any countable $\mathscr{A} \subseteq \mathscr{I}$ we have $\bigcup \mathscr{I} \in \mathscr{I}$. Let \mathscr{I}^c denote the dual filter $\{X \setminus A : A \in \mathscr{I}\}$.

In this paper \mathscr{B} denotes the σ -field of Borel subsets of the Cantor set $^{\omega}2$ (ω denotes the set of natural numbers and 2 denotes the set $\{0,1\}$). Let \mathscr{K} denote the ideal of subsets of $^{\omega}2$ of first Baire category. The canonical product measure on $^{\omega}2$ is called the Lebesgue measure on $^{\omega}2$. Let \mathscr{L} denote the ideal of subsets of $^{\omega}2$ of Lebesgue measure zero. Note that both ideals \mathscr{K} and \mathscr{L} have Borel bases (i.e. bases contained in \mathscr{B}). If \mathscr{L} is an ideal on $^{\omega}2$ then $\mathscr{L}\cap\mathscr{B}$ is an ideal in the σ -field \mathscr{B} . We denote the quotient boolean algebra $\mathscr{B}/(\mathscr{L}\cap\mathscr{B})$ by \mathscr{B}/\mathscr{L} .

A boolean algebra is σ -saturated if there is no uncountable family of pairwise disjoint elements of this algebra. Recall that the algebras \mathscr{B}/\mathscr{K} and \mathscr{B}/\mathscr{L} are σ -saturated. Suppose that \mathscr{C} is a boolean algebra and $a \in \mathscr{C}$. Then by \mathscr{C}_a we denote the boolean algebra with the universe $\{b \in \mathscr{C}: b \leqslant_{\mathscr{C}} a\}$ endowed with the operations canonically defined from the operations in \mathscr{C} .

1. The main result. We show a method of constructing a dense subset of the boolean algebra \mathcal{B}/\mathcal{I} from a base of \mathcal{I} for some class of ideals on $^{\omega}2$.

Received by the editors July 29, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 04A15; Secondary 28A05.

THEOREM 1.1. Suppose \mathcal{I} is a σ -ideal on $^{\omega}2$ with a Borel base and \mathcal{B}/\mathcal{I} is σ -saturated. Then $\Delta(\mathcal{B}/\mathcal{I}) \leqslant \Delta(\mathcal{I}) \cdot \aleph_0$.

PROOF. For $n \in \omega$ let $I_n = \{ f \in {}^{\omega}2: f(n) = 0 \}$. The family $\{ I_n: n \in \omega \}$ σ -generates \mathscr{B} and has the following independence property: for any σ -complete Boolean algebra \mathscr{C} and a function $f: \{ I_n: n \in \omega \} \to \mathscr{C}$, there exists a σ -complete homomorphism $h: \mathscr{B} \to \mathscr{C}$ which extends f (see [3, Theorem 31.6]).

For any $A \in \mathcal{B}$, we fix an ordinal $\alpha(A) < \omega$, and a sequence $\{B_{\xi}^A : \xi \leq \alpha(A)\}$ such that $B_{\alpha(A)}^A = A$, and for every $\xi \leq \alpha(A)$ we have $B_{\xi}^A = {}^{\omega}2 \setminus B_{\eta}^A$ for some $\eta < \xi$, or $B_{\xi}^A = \bigcup \{B_{\eta}^A : \eta \in X\}$ for some $X \subseteq \xi$, or $B_{\xi}^A = I_n$ for some $n \in \omega$.

LEMMA 1.2. Suppose \mathcal{J} is a σ -ideal on $^{\omega}2$ with a Borel base and \mathcal{B}/\mathcal{J} is σ -saturated. Then there exists $a \in \mathcal{B}/\mathcal{J} \setminus \{0\}$ such that $\Delta((\mathcal{B}/\mathcal{J})_a) \leq \Delta(\mathcal{J}) \cdot \aleph_0$.

PROOF. Let $\mathscr{A} \subseteq \mathscr{B} \cap \mathscr{J}$ be a base of \mathscr{J} of minimal cardinality. Let \mathscr{C}_0 be the subalgebra of \mathscr{B} generated by $\{B_{\xi}^A \colon A \in \mathscr{A} \land \xi \leqslant \alpha(A)\} \cup \{\mathscr{I}_n \colon n \in \omega\}$. Then $|\mathscr{C}_0| \leqslant \Delta(\mathscr{J}) \cdot \aleph_0$.

Let $\mathscr C$ be the complete boolean algebra for which $\mathscr C_0/\mathscr J$ is a dense subalgebra and let $\pi\colon\mathscr C_0\to\mathscr C$ be the canonical embedding, i.e. $\pi(C)=[C]_{\mathscr J}$. Let $\tilde\pi\colon\mathscr B\to\mathscr C$ be the σ -homomorphism extending $\pi\upharpoonright\{I_n\colon n\in\omega\}$. For $A\in\mathscr A$ and $\xi\leqslant\alpha(A)$, one can prove by induction on ξ that $\tilde\pi(B_\xi^A)=\pi(B_\xi^A)$. It follows that, for every $C\in\mathscr C_0$, we have $\tilde\pi(C)=\pi(C)$, i.e., $\tilde\pi$ extends π .

Let $\varphi\colon \mathscr{B}/\mathscr{J}\to\mathscr{C}$ be the σ -homomorphism defined by $\varphi([B]_{\mathscr{J}})=\tilde{\pi}(B)$ for $B\in\mathscr{B}$. The definition is correct because $\mathscr{J}\subseteq\ker\tilde{\pi}$. Let $\mathscr{E}\subseteq\mathscr{B}\smallsetminus\mathscr{J}$ be a maximal \mathscr{J} -disjoint family such that $\{[E]_{\mathscr{J}}\colon E\in\mathscr{E}\}\subseteq\ker\varphi$ (\mathscr{J} -disjoint means that $E\cap F\in\mathscr{J}$ for any different elements of \mathscr{E}). Then \mathscr{E} is countable, so $[\bigcup\mathscr{E}]_{\mathscr{J}}\in\ker\varphi$. Let $a=[^{\omega}2\smallsetminus\bigcup\mathscr{E}]_{\mathscr{J}}$. Then $a\neq 0$ and the algebras $(\mathscr{B}/\mathscr{J})/\ker\varphi$ and $(\mathscr{B}/\mathscr{J})_a$ are isomorphic. Since $\varphi(\mathscr{B}/\mathscr{J})=\mathscr{C}$, the algebras $(\mathscr{B}/\mathscr{J})_a$ and \mathscr{C} are isomorphic. \mathscr{C} has a dense subset, the cardinality of which is $\Delta(\mathscr{J})\cdot\aleph_0$, so $(\mathscr{B}/\mathscr{J})_a$ does also. Hence, the lemma is proved.

Now suppose I satisfies the assumptions of the theorem. Then let

$$\mathscr{A} = \big\{ a \in \mathscr{B}/\mathscr{I} \smallsetminus \big\{ 0 \big\} \colon \Delta \big(\big(\mathscr{B}/\mathscr{I} \big)_a \big) \leqslant \Delta \big(\mathscr{I} \big) \cdot \aleph_0 \big\}.$$

We show that \mathscr{A} is dense in \mathscr{B}/\mathscr{I} . Suppose $[B]_{\mathscr{I}} \in \mathscr{B}/\mathscr{I} \setminus \{0\}$ and let \mathscr{I} be the ideal generated by \mathscr{I} and ${}^{\omega}2 \setminus B$. Then \mathscr{B}/\mathscr{I} is σ -saturated and $\Delta(\mathscr{I}) \leqslant \Delta(\mathscr{I})$. By the lemma there exists $a' \in \mathscr{B}/\mathscr{I} \setminus \{0\}$ such that $\Delta((\mathscr{B}/\mathscr{I})_a) \leqslant \Delta(\mathscr{I}) \cdot \aleph_0 \leqslant \Delta(\mathscr{I}) \cdot \aleph_0$. Then there exists a Borel set $A \subseteq B$ such that $a' = [A]_{\mathscr{I}}$. Let $a = [A]_{\mathscr{I}}$. Then the algebras $(\mathscr{B}/\mathscr{I})_{a'}$ and $(\mathscr{B}/\mathscr{I})_a$ are isomorphic and $a \leqslant [B]_{\mathscr{I}}$. Hence, \mathscr{A} is dense in \mathscr{B}/\mathscr{I} .

Now let \mathscr{A}^* be a maximal subfamily of \mathscr{A} consisting of pairwise disjoint elements. Then $|\mathscr{A}^*| \leq \aleph_0$. For each $a \in \mathscr{A}^*$ let \mathscr{D}_a be a dense subset of $(\mathscr{B}/\mathscr{I})_a$, the cardinality of which is at most $\Delta(\mathscr{I}) \cdot \aleph_0$. Then $\bigcup \{\mathscr{D}_a \colon a \in \mathscr{A}^*\}$ is a dense subset of \mathscr{B}/\mathscr{I} with cardinality at most $\Delta(\mathscr{I}) \cdot \aleph_0$. Hence the theorem is proved.

2. Steinhaus property of ideals. It follows from Theorem 1.1 that $\Delta(\mathcal{B}/\mathcal{L}) \leq \Delta(\mathcal{L})$. We show that the reverse inequality is also true.

Let G be a group, $a \in G$ and A, $B \subseteq G$. We define $A^{-1} = \{x^{-1} : x \in A\}$, $A \cdot B = \{x \cdot y : x \in A \land y \in B\}$ and $A \cdot a = \{x \cdot a : x \in A\}$.

DEFINITION 2.1. Let G be a group and \mathscr{C} a σ -complete field of subsets of G. A σ -complete ideal \mathscr{I} on G satisfies the \mathscr{C} -Steinhaus property if there exist a base of \mathscr{I} contained in \mathscr{C} and a countable set $W \subseteq G$ such that

- (i) $(\forall A \in \mathcal{I})(\forall q \in W)(A \cdot q \in \mathcal{I})$,
- (ii) $(\forall A, B \in \mathscr{C} \setminus \mathscr{I})((B^{-1} \cdot A) \cap W \neq \varnothing)$.

Two well-known ideals on "2 which satisfy the \mathscr{B} -Steinhaus proeprty are \mathscr{L} and \mathscr{K} (see [2, Theorem 4.8]). We give some other examples. Suppose \mathscr{I} and \mathscr{I} are ideals on "2. Then

$$\mathscr{I} \times \mathscr{J} = \{ X \subseteq {}^{\omega}2 \times {}^{\omega}2 \colon \{ x \colon \{ y \colon \langle x, y \rangle \in X \} \notin \mathscr{J} \} \in \mathscr{I} \}.$$

Let \mathcal{B}_2 denote the σ -field of Borel subsets on $^{\omega}2 \times ^{\omega}2$. Then we define

$$\mathscr{I} \otimes \mathscr{J} = \{ X \subseteq {}^{\omega}2 \times {}^{\omega}2 : (\exists Y \in \mathscr{B}_{2} \cap (\mathscr{I} \times \mathscr{J})) (X \subseteq Y) \}.$$

It is easy to show that the ideals $\mathcal{L} \otimes \mathcal{K}$ and $\mathcal{K} \otimes \mathcal{L}$ satisfy the \mathcal{B}_2 -Steinhaus property. The next lemma clarifies condition (ii) of Definition 2.1.

LEMMA 2.2. Let G be a group and \mathscr{C} a σ -field of subsets of G. Let \mathscr{I} be an ideal with a base contained in \mathscr{C} . Suppose W is a countable subset of G such that $(\forall A \in \mathscr{I})(\forall q \in W)(A \cdot q \in \mathscr{I})$. Then the following sentences are equivalent:

- (i) $(\forall A, B \in \mathscr{C} \setminus \mathscr{I})((B^{-1} \cdot A) \cap W \neq \varnothing)$,
- (ii) $(\forall A \in \mathscr{C} \setminus \mathscr{I})(A \cdot W^{-1} \in \mathscr{I}^c)$,
- (iii) $(\forall A \in \mathscr{C} \setminus \mathscr{I}^c)(\bigcap \{A \cdot q^{-1} : q \in W\} \in \mathscr{I}).$

PROOF. (ii) \Leftrightarrow (iii) is obvious. (i) \Rightarrow (ii). Suppose $A \in \mathscr{C} \setminus \mathscr{I}$ and $A \cdot W^{-1} \notin \mathscr{I}^c$. Then there exists $B \in \mathscr{C} \setminus \mathscr{I}$ such that $(A \cdot W^{-1}) \cap B = \varnothing$. But then $(B^{-1} \cdot A) \cap W = \varnothing$.

(ii) \Rightarrow (i). Suppose $A, B \in \mathscr{C} \setminus \mathscr{I}$. Then by (ii) we have $(A \cdot W^{-1}) \in \mathscr{I}^c$; hence, $(A \cdot W^{-1}) \cap B \neq \varnothing$, so $(B^{-1} \cdot A) \cap W \neq \varnothing$.

The following lemma is an application of the Steinhaus property.

LEMMA 2.3. Suppose \mathscr{C} is a σ -field on a group G. If the ideal \mathscr{I} on G satisfies the \mathscr{C} -Steinhaus property, then $\Delta(\mathscr{I}) \leq \Delta(\mathscr{C} \setminus \mathscr{I})$.

PROOF. Let \mathscr{A} be a dense subset of $(\mathscr{C} \setminus \mathscr{I}^c, \supseteq)$, the cardinality of which is $\Delta(\mathscr{C} \setminus \mathscr{I}^c, \supseteq)$. Let W be a countable subset of G given by the Steinhaus property. Let $\mathscr{A}^* = \{ \bigcap \{ A \cdot q^{-1} : q \in W \} : A \in \mathscr{A} \}$. Then $|\mathscr{A}^*| \le |\mathscr{A}|$ and $\mathscr{A}^* \subseteq \mathscr{I}$. We show that \mathscr{A}^* is a base of \mathscr{I} . Let $B \in \mathscr{I}$. Then $B \cdot W \in \mathscr{I}$. Hence, there exists $A \in \mathscr{A}$ such that $B \cdot W \subseteq A$. Then $B \subseteq \bigcap \{ A \cdot q^{-1} : q \in W \}$. Hence, the lemma is proved.

The next lemma gives us a lower estimation of $\Delta(\mathcal{B}/\mathcal{L})$.

Lemma 2.4.
$$\Delta(\mathcal{B} \setminus \mathcal{L}, \subseteq) \leq \Delta(\mathcal{B}/\mathcal{L})$$
.

PROOF. Let \mathscr{A} be a dense subset of $\mathscr{B}/\mathscr{L} \setminus \{0\}$ with cardinality $\Delta(\mathscr{B}/\mathscr{L})$. We may assume $\mathscr{A} = \{[A]: A \in \mathscr{A}^*\}$ and, for each $A \in \mathscr{A}^*$ and every open set U, if $A \cap U \neq \emptyset$, then $A \cap U \notin \mathscr{L}$. We show that \mathscr{A}^* is dense in $(\mathscr{B} \setminus \mathscr{L}, \subseteq)$. Suppose $B \in \mathscr{B} \setminus \mathscr{L}$. Let $C \subseteq B$ be a closed set such that $C \notin \mathscr{L}$. Then there exists $A \in \mathscr{A}^*$ such that $[A] \leq [C]$. But ${}^{\omega}2 \setminus C$ is an open set, hence $A \subseteq C$.

Note that $\Delta(\mathcal{B} \setminus \mathcal{I}, \subseteq) = \Delta(\mathcal{B} \setminus \mathcal{I}^c, \supseteq)$. Hence from Theorem 1.1 and Lemmas 2.3 and 2.4 we obtain

Theorem 2.5. $\Delta(\mathcal{B}/\mathcal{L}) = \Delta(\mathcal{L})$.

3. Generalizations and comments. (1) We show that in the formulation of Theorem 1.1 the assumption of the existence of a Borel base is essential.

THEOREM 3.1. If the theory ZFC is consistent, then the theory ZFC + $2^{\aleph_0} = \aleph_2$ + "there exists a σ -ideal \mathcal{I} on $^{\omega}2$ such that \mathscr{B}/\mathcal{I} is σ -saturated, $\Delta(\mathscr{B}/\mathcal{I}) = \aleph_2$ and $\Delta(\mathcal{I}) = \aleph_1$ " is consistent.

PROOF. Let us add to a model of ZFC + $2^{\aleph_0} = \aleph_1$, by means of a generic extension, a sequence $\{r_\alpha : \alpha < \omega_2\}$ of independent random reals. Let $X = \{r_\alpha : \alpha < \omega_1\}$. Then for every set $A \in \mathcal{L}$, we have $|A \cap X| \leq \aleph_0$.

Let $\mathscr{J} = \{A \subseteq {}^{\omega}2: |A \cap X| \leq \aleph_0\}$. Then $\Delta(\mathscr{J}) = \aleph_1$. Let \mathscr{A} be a maximal family of pairwise disjoint sets from $\mathscr{B} \setminus \mathscr{L}$ such that for every $A \in \mathscr{A}$ we have $|X \cap A| \leq \aleph_0$. We put $B = {}^{\omega}2 \setminus \bigcup \mathscr{A}$ and $b = [B]_{\mathscr{L}}$. It is easy to see that for every Borel set $C \subseteq B$ we have $(C \in \mathscr{L})$ iff $C \in \mathscr{J}$. From this we conclude that $\mathscr{B}/\mathscr{J} \cong (\mathscr{B}/\mathscr{L})_b$; hence

$$\Delta(\mathscr{B}/\mathscr{J}) = \Delta((\mathscr{B}/\mathscr{L})_b) = \Delta(\mathscr{B}/\mathscr{L}) = \Delta(\mathscr{L}).$$

In our model, "2 is not a union of less than \aleph_2 sets from \mathscr{L} . This fact implies that $\Delta(\mathscr{L}) = \aleph_2$.

(2) Let us consider $^{\kappa}2$ for a given infinite cardinal number κ . Let \mathscr{B}_{κ} be the σ -algebra generated by $\{I_{\xi}: \xi < \kappa\}$, where $I_{\xi} = \{f \in ^{\kappa}2: f(\xi) = 0\}$. A slight modification of the proof of Theorem 1.1 gives us the following result.

Theorem 3.2. Suppose \mathcal{I} is a σ -ideal on $^{\omega}2$ with a base contained in \mathcal{B}_{κ} such that $\mathcal{B}_{\kappa}/\mathcal{I}$ is σ -saturated. Then $\Delta(\mathcal{B}_{\kappa}/\mathcal{I}) \leq \Delta(\mathcal{I}) \cdot \aleph_0$.

Let us consider the product measure on $^\kappa 2$ arising from the measure on $\{0,1\}$ which gives values 0.5 to 0 and 1. Let \mathscr{L}_{κ} be the ideal of zero measure subsets of $^\kappa 2$. Let $e_{\xi} \in ^\kappa 2$ be a function defined by $e_{\xi}(\xi) = 1$ and $e_{\xi}(\eta) = 0$ for $\eta \neq \xi$. For $B \in \mathscr{B}_{\kappa}$ we define supp $(B) = \{\xi \in \kappa : B + e_{\xi} \neq B\}$ (we treat $^\kappa 2$ here as a product of κ copies of the cyclic group $\{0,1\}$).

Note that for any $B \in \mathcal{B}_{\kappa}$ we have $|\text{supp}(B)| \leq \aleph_0$. For any finite function σ , the domain of which is contained in κ and range in $\{0,1\}$, let $\langle \sigma \rangle = \{ f \in {}^{\kappa}2 : \sigma \subseteq f \}$. Now suppose $A \in \mathcal{B}_{\kappa}$. We define $A^* = A \setminus \bigcup \{ \langle \sigma \rangle : \langle \sigma \rangle \cap A \in \mathcal{L}_{\kappa} \land \text{ domain of } \sigma \text{ is contained in supp}(A) \}$.

Note that for every $A \in \mathcal{B}_{\kappa}$ we have $[A]_{\mathcal{L}_{\kappa}} = [A^*]_{\mathcal{L}_{\kappa}}$, and for every open set U, if $A \cap U \neq \emptyset$, then $A \cap U \notin \mathcal{L}_{\kappa}$.

We can now imitate the proof of Lemma 2.2 to obtain the following inequality.

Lemma 3.3.
$$\Delta(\mathscr{B}_{\kappa} \setminus \mathscr{L}_{\kappa}, \subseteq) \leq \Delta(\mathscr{B}_{\kappa}/\mathscr{L}_{\kappa})$$
.

Suppose $A \in \mathscr{B}_{\kappa} \setminus \mathscr{L}_{\kappa}^{c}$. Then the set $\bigcap \{A + f : f \in {}^{\kappa}2 \land f^{-1}(\{1\}) \text{ is a finite subset of supp}(A)\}$ belongs to \mathscr{L}_{κ} . This observation allows us to generalize the proof of Lemma 2.3:

Lemma 3.4. $\Delta(\mathscr{L}_{\kappa}) \leq \Delta(\mathscr{B}_{\kappa} \setminus \mathscr{L}_{\kappa})$.

From the above lemmas and theorem we obtain the following equality.

COROLLARY 3.5. For any infinite cardinal number κ , $\Delta(\mathscr{L}_{\kappa}) = \Delta(\mathscr{B}_{\kappa}/\mathscr{L}_{\kappa})$.

(3) A precise estimation of $\Delta(\mathcal{L})$ is impossible. Clearly $\aleph_1 \leqslant \Delta(\mathcal{L}) \leqslant 2^{\aleph_0}$. Since the additivity of Lebesgue measure is less than or equal to $\Delta(\mathcal{L})$, Martin's Axiom implies that $\Delta(\mathcal{L}) = 2^{\aleph_0}$. The theory ZFC + $2^{\aleph_0} + \aleph_2 + \Delta(\mathcal{L}) = \aleph_1$ is also (relatively) consistent (see [1]).

REFERENCES

- 1. J. Cichoń, On bases of ideals and boolean algebras, Proc. Open Days for Model Theory and Set Theory (Jadwisin, 1981), edited by W. Guzicki, W. Marek, A. Pelc and C. Rauszer.
 - 2. J. G. Oxtoby, Measure and category, Springer, Berlin, 1970.
 - 3. R. Sikorski, Boolean algebras, Springer, Berlin, 1964.

Instytut Matematyki, Uniwersytetu Wrocławskiego, Pl. Grunwaldzki 2 / 4, 50 - 384 Wrocław, Poland