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RESONANCE AND BIFURCATION OF

HIGHER-DIMENSIONAL TORI

DIETRICH FLOCKERZI

Abstract. By means of an example it is shown that a supercritical bifurcation of an

invariant 2-torus into an invariant 3-torus prevailing in the case of nonresonance

may be replaced by a transcritical bifurcation into a pinched invariant 3-torus in the

case of resonance. The connections of these bifurcation phenomena with the

properties of the spectrum of the underlying invariant 2-torus are discussed.

1. Statement of the results.

1.1 Introduction. In this note we propose a local study of the following smooth

2-parameter system

x = A(y, a)x - ||x||2X,       X G R2,

(S) ¡yx\
h = g(y,v,oi),     y2 = i,     y = \yJ e T>

describing the flow of a 4-dimensional system of ordinary differential equations in a

small neighborhood of the invariant 2-torus M2(¡x, a) = {x = 0}. T2 denotes the

standard 2-torus so that y is defined modulo 2tt. For a fixed irrational « and for

relatively prime integers p ¥= 0 and q > 0 we take A and g to be

A : T2 X (-5, S) -> R2        (ä > 0 sufficiently small),

A(y, a) = Ä(a) +2adiag(cos(qyx-py2)),        1(a) = ("     "^J,

and

g: T2 x[0,p] x(-5, «) -» T1       (p > 0 sufficiently small),

g(y,p,a) = p/q + p + asin^ - py2).

Thus a g (-«, a) is to be considered as the bifurcation parameter and p g [0, p] as

an additional parameter varying the rotation vector on the invariant 2-torus. We

restrict our attention to positive p since the case of negative p can be transformed to

this case by changing the sign of yx and p. Since M2(¡x, 0) is a vague attractor for (S)

and since the form of the mean value A(a) of A(y, a) seems to suggest that

M2(p, a) is stable for negative and unstable for positive a, one may expect a

supercritical bifurcation of a stable invariant 3-torus M3(p, a) from the 2-torus

M2(p, a) at a = 0. This is indeed the case for p > 0 due to the fact that for positive

p the normal portion 2.N(p,a) of the spectrum of M2(¡i, a) (cf. [7]) crosses with a

Received by the editors December 27, 1983.

1980 Mathematics Subject Classification. Primary 58F14, 34C45.

©1985 American Mathematical Society

0002-9939/85 $1.00 + $.25 per page

147



148 DIETRICH FLOCKERZI

from R" to R+. The situation in the resonant case p = 0 is different in so far as

2^(0, a) always contains 0 in its interior if a is nonzero. This leads to a two-sided

bifurcation of a pinched, stable invariant 3-torus M3~(0, a) at a = 0.

1.2 The bifurcations and the attractors of(S). To describe our results in more detail

we first define the rays

L± = {(n,a) g (0, j5) x(-5,ô): ±a = p},

Li = {(ß,a)e (0,p)x (-5,5): ±a = (2/i/3>}.

We are interested in a local analysis and thus in the restrictions of these sets to a

sufficiently small neighborhood U of (p, a) = (0,0). We denote these restrictions to

U by the same symbols. In Figure 1 we have sketched these bifurcation curves L*

and have introduced the regions I±, II± and III±.

Figure 1

In §2 of this note we prove the following changes in the structure of the attractors

of system (S):

(1.2.1) The positive p-axis corresponds to the Hopf-type bifurcation of a unique

invariant 3-torus A73(p, a) from M2(¡i, a). The 2-torus A/2(p,0) is a vague attractor

for nonnegative p. The 3-torus M3(¡i, a) exists for all (p, a) g I+u Lx U II+. In

region I+ it is the only attractor of (S), the 2-torus M2(p, a) is a repellor.

(1.2.2) The ray Lx corresponds to a saddle node bifurcation creating q invariant

2-tori on M3(p, a). (If M3(¡x, a) is identified with a circle, these 2-tori are saddle

nodes.) On Lx and in II+, the q invariant 2-tori on M3(p, a) are the only attractors

of (S). M2(p, a) is still a repellor.

(1.2.3) The ray L2 corresponds to Naimark-Sacker bifurcations causing the

pinching of the 3-torus M3(¡i, a) to M3~(p, a). On L2 , in III+ and on the positive

a-axis, the attractors of (S) are the q invariant circles along which M3~(p, a)

coincides with M2(¡i, a).

(1.2.4) In region I", M2([i, a) is the attractor of (S).
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(1.2.5) The ray L\ corresponds to another saddle node bifurcation creating q

invariant circles of saddle node type on M2(fi, a). On L\, in II" and on L2, the only

attractors of (S) are the q invariant circles on M2(fi, a).

(1.2.6) Finally, the ray L2 represents the locus of another Naimark-Sacker

bifurcation. In region III" and on the negative a-axis, there exists a pinched

invariant 3-torus M3~(p, a) besides the invariant 2-torus M2(n, a). The only attrac-

tors of (S) are the q invariant circles along which M3~(p, a) coincides with M2(¡i, a).

1.3 Spectral properties of A/2(p, a). In §3 we discuss the behavior of the normal

and the tangential portions of the spectrum of the invariant 2-torus M2(¡x, a) in

dependence of p and a. In particular we show that the bifurcation of the pinched

3-torus M3~(¡x,a) into the full 3-torus M3(ß,a) (when crossing L2 from III+ to

II+) and the annihilation of the pinched 3-torus M3~(¡i, a) (when crossing L2 from

III" to II") is due to:

(1.3.1) for (p, a) g III±, zero is in the interior of the normal spectrum 2w(p, a) of

M2(¡x, a), and

(1.3.2) for (p, a) g II+ (II"), the left (right) endpoint of 2^(p, a) has crossed from

R" to R+ (or from R+ to R , respectively). The bifurcations on L2 (L2) thus arise

because invariant circles on M2(p, a) which are normally attractive in region III+

(II") are normally repulsive in II+ (III). These changes in normal attractivity cause

bifurcations of invariant 2-tori from these invariant circles (Naimark-Sacker bifurca-

tions).

2. The bifurcations and the attractors of (S).

2.1 The reduction to dimension 2. By introducing polar coordinates (r, 6) for x in

(S) and by changing coordinates on the underlying 2-torus via

-P

b
a, b & Z, qb + ap = 1,

we obtain the following system in cylindrical coordinates:

r = a(l + 2cos\¡j)r — r3,        6 = u>,

\p = qn + oasin \p,        4> = 1/q + ap + aasin t//.
(SI)

The coordinates are chosen as in Figure 2 so that {r = 0} represents the 2-torus

M2(p, a). The (r, ^) system is independent of 0 and <b and can be analyzed
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separately. For sufficiently small p and 5, <#> is positive and bounded away from 0.

Hence one obtains the full 4-dimensional picture for (SI) by adjoining a T2 to the 2-

dimensional one of the (r, t//)-system. The corresponding figures for the "period

map" on the set [y2 = 0 mod 2-n) of the original system (S) are then gotten by

cutting along a ray \p = const., linearly contracting the (r, \p)-plane into a wedge of

angular width 2-n/q and repeating this contracted figure in each of the q wedges (cf.

[4]). From now on we frequently deal with the 2-dimensional system

(S2) r = a(l + 2cos \p)r — r3,        \p = qu + qasin \p.

Sometimes we interpret (r, \p)as regular polar coordinates, other times as "blown-up"

polar coordinates as shown in Figure 2.

2.2 The critical points of (S2). Any trajectory starting at time t = 0 in N = {(r, ip):

0 < r < r0] with r0 > f3 remains for all future time in N. For 0 < \a\ < p there are

no critical points in N. For the other values of p and a one has the following critical

points in N:

(2.2.1) (0,*)    forp = a = 0, ^ G F1;

(2.2.2) (0,t//,)    for|a|> p > 0, (u,a) # (0,0),

where, for positve p,ipx = \px(u, a) and \p2 = \p2(u, a) are the two solutions of <p = 0

with 0 < \¡/x < ¡pi < ^m- Fot positive (negative) values of o we define ^(0, a) to be

7r (or 0) and ^(0, a) to be 2m (or tt, respectively). Note that on {r = 0}, (0, \^x) is

attractive, whereas (0, ^2) is repulsive.

(rl,\px)    for p < a < (2/\/3~)p    and

(2.2.3) ('a.'h)    for« >p,-a > (2/v/3_)p,(p,a)# (0,0)

I ri = rt(fi, a) = (a + 2acos ^,(p, a))     , z = 1,21.

By considering the 1-dimensional Bernoulli-equation

,     . dr^ = a(l + 2cos \p)r - r3

d4> qu + aasin x^

for 0 < \a\ < p, one is led to the conclusion that {r = 0} is repulsive for positive

and attractive for nonpositive values of a. Since \p is positive, {r = 0} behaves like a

focus for 0 < \a\ < p and like a singular node for p = a = 0. By the Poincaré-

Bendixson theory, one therefore obtains a periodic orbit for (S2) in TV and hence an

invariant 3-torus for (S) as long as a belongs to the interval (0, p).

2.3 The T2 —> T3 bifurcation on the positive ¡i-axis. Following [3] we introduce the

new bifurcation parameter e > 0 via a = eß and use the scaling r -> er in (SI). Then

the averaging transformation

r = r -(2eß/qn)r ■ sin \p,        \2eß\<qp,

leads to

r = er(ß - er2) + e2/p rö(e2 + ß2),

which necessitates the choice ß = + e. By the further averaging

\p = \p ±(e2/n)cosi¡/,        <t> = (j> ±(ae2/q¡x)cos\p
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with e2 < p, we generate a weakly coupled system

r = e2r(±l - r2 + 0(e2/p)),        6 = w,

$ = qu+ 0(eA/u),        4>= 1/q + au+ 0(eA/p).

Thus for each p0 > 0 and d > 1, there is a C > 0 such that for 0 < a < Cpd,

0 < p < p0, there exists a unique smooth invariant and asymptotically stable 3-torus

M3(u,a) for system (S) (cf. [3, 2]). This shows that near, but above, the positive

p-axis system (S2) has a unique periodic orbit C(u, a). This orbit is the attractor for

(S2).
2.4 The regions I ±. We now show that C(p., a) is the unique periodic orbit for (S2)

not only near the p-axis but also in all of the region I+. By (2.2), (2.3) and the global

results of [1], one expects C(u, a) to exist in I+ with a period tending to infinity as a

approaches p from below. An elementary proof of this fact which also includes the

uniqueness of the periodic orbit can be derived by an analysis of (S3). (S3) has a

unique attractive 277-periodic solution for 0 < a < p and no periodic solution for

-a > p > 0. The period of the corresponding periodic orbit of (S2) tends to infinity

as a approaches p from below. The results of (2.1)-(2.4) now lead to the phase

portraits for (S2) that are shown in Figure 3.

(b)

(d)

Figure 3. Phase portraits of (S2) for (a) p = a = 0,

(b) p > 0, a = 0, (c) 0 < a < p(I + ), and (d) -a > u > 0(1").

2.5 The saddle node bifurcations on Lf and the regions II ±. For positive a, r is

negative outside the curve Pa = {(r, t/>): r2 = a + 2acos \p} and positive inside Pa.

The critical points (z-,, <//,) of (2.2.3) are located on Pa and the integral rays

i// = t//,(p, a) (cf. (2.2.2)). For a = p they coincide, for a G (p,(2/ \/3~)p) they are

different and have a positive first component. As a approaches (2/ -J3 )p from
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below, (rx, +i) tends to (0,(4/3)*) and (r2, *2) to (^ ,(5/3)tt). See Figure 4 In

our analysis we now interpret r and * in (S2) as regular polar coordinates and

proceed to determine the type of each critical point. It will turn out that (rx, ^) is a

stable node and (r2, ^2) a saddle point for all (p, a) in region II+. On L+ these two

points coincide and form a saddle node.

The eigenvalues of the linearization at (r„ ^,), i = 1,2, are given by

X!(p,a) = -2r,2(p,a),        r\T¡(p,a) = aacos ^,(p, a).

Associated eigenvectors with respect to the basis given by the r- and the ^-directions

are

(a)

^(M,«)-(J., »F(mv»)
2z-,sint//,(p,a)

2+(ö + 4)cos^,(p,a)l"

^=,|J1=*2 ***. *»*.

(l)=tij
1

*=*.

Figure 4. Linearizations of (S2) at (/-,., >//,.), / = 1,2.
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In region II+, \f is different from }J¡ except for (p, a) belonging to the ray

L% = {(p, «): « = (l -(2/(q + 4))2)"1/2p > o},

on which vx and v\ are collinear. If we denote the angle \¡/x, defining L% by \p* g (tt,

(3/2)w), the critical point (rx, ^*) is a degenerate node. In Figure 4 we have

sketched the curve Pa and the integral rays ^ = 0, and have indicated the eigen-

spaces generated by vj for (a, a) on Lx (Figure 4(a)), for (p, a) in II+, below L%

(Figure 4(b)), and above L% (Figure 4(c)).

Because of the results in (2.1) and (2.5), the two branches of the unstable manifold

of (r2, \p2) must join the critical point (rx, \}/x) in the region {(r, \p): 0 < r < r0},

Figure 5. Phase portraits of (S2) (a) on L¡ , (b) in II+ with ^ > ^ and

(cünlTwithi^ <i|/f.
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giving a homoclinic orbit in the situation of Figure 4(a) and two heteroclinic orbits

for Figure 4(b), (c). In blown-up coordinates we thus have established the following:

On Lx and in II+ one has a unique invariant circle C(u, a) in {(r, ^): 0 < r < r0}.

The attractor of (S2) is the point (rx(u, a), \px(u, a)) on this circle. The circle

[r = 0} is repulsive. See Figure 5. For a general discussion of such a saddle node

bifurcation, we refer to [2, pp. 360-362].

The problem is much easier to handle for negative values of a. A similar analysis

shows that the circle [r = 0} is attractive on L\, in II", and on L2. The attractor of

(S2) is the critical point (0, \px(p, a)). See Figure 6. If we translate the results of 2.4

and 2.5 into the context of system (S) we have shown points (1.2.1), (1.2.2), (1.2.4)

and (1.2.5).

2.6 The Naimark-Sacker bifurcations on Lf and the regions III ±. On L2 the

critical point (rx, \px) undergoes a saddle node bifurcation with the critical point

(0, \px) so that in region III"*" and on the positive a-axis, the unstable manifold of

(r2, \p2) joins the critical point (0, \}/x) on the circle {r = 0}. The invariant circle

C(p, a) now develops a cusp at (0, \px). See Figure 7.

We would like to remark that this saddle node bifurcation for the 2-dimensional

system (S2) is, in fact, a Naimark-Sacker bifurcation for the 4-dimensional system

(b)    ]¡) = xi) 4>=^.

Figure 6. Phase portraits of (S2) (a) on Lx, and (b) in II  and on L2.

Figure 7. Phase portraits of (S2) (a) in III+, and (b) for p = 0, a > 0.
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(S) or (SI). This follows immediately from an analysis of (SI). For \px close to (4/3)77

and \px > (4/3)77, the circle{(i//, <i>): \p = \px} is repulsive; for \¡/x < (4/3)77, it is

attractive. This leads to the contraction of the 2-torus {(z-, 6, \p, <i>): r = rx, \p = \¡/x}

to the circle {(\p, <j>): 4> = 41 \] when \px decreases through (4/3)77.

For -a > (2/ i/3)u ^ 0 the critical points of (S2) are the stable node (0,\px) and

the saddle points (0, \p2) and (r2, ^2). On L2 the critical points (0, \}/2) and (r2, ¡p2)

coincide and form a saddle node; in III" and on the negative a-axis r2 is positive. As

above, the unstable manifold of (z-2, \¡>2) joins the node (0, ipx). See Figure 8. Again,

the translation into the 4-dimensional context of system (S) yields the claims of

(1.2.3) and (1.2.6).

Figure 8. Phase portraits for (S2) (a) for p = 0, a < 0, and (b) in III .

3. Spectral properties of M2(u, a).

3.1 Preliminaries. We start by repeating the notions of the spectrum of an

invariant manifold that are relevant for our analysis. For more details we refer to [6

and 7]. We take \p and $ as the coordinates on the invariant 2-torus M2(u, a) and

denote the now on M2(u, a) generated by

(1) ¿ =

' qu + qa sin \p

1
—h au + aa sin \p

¿=i;|er2,

by a(£, p, a, t) = ($)(£, p, a, t), a(|, p, a,0) = £. We choose p > 0 and 5 > 0 so

that <j> is positive for all (£, u, a) g T2 X [0, p] X [-5, 5]. Then we define the

A-shifted variational equations along a for the normal and the tangential directions

by

(2)

/    /    / x     x v /        n      ¡a + 2acos\p -w
Ù = (A(*(£,u.,a,t),a)-\l)u,        A(^,a)^ '

a + 2a cos \p i

(3)x       v=(B(*U,u,a,t),a)-\l)v,        B(4<,a)
qa cos \p     0 \

aa cos \p     0 / '
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respectively. For fixed |e72 the normal portion 2,N(£,u,a) and the tangential

portion 2r(£, p, a) along the solution a(£, p, a, i) of (1) are then

2,N(Ü, u, a) = {A G R: (2)x does not admit an exponential dichotomy},

2r(£, u,a) = { X G R: (3)x does not admit an exponential dichotomy}.

The normal portion S^p, a) and the tangential portion 2r(p, a) of the spectrum of

the 2-torus M2(u, a) are then the unions

2N(u,a)=   U  2"(£,p,«),        2r(p,«)=   lj2rU,p,«).

3.2 The normal spectrum S^p, a). For 0 < \a\ < u the normal spectrum 2N(u, a)

is equal to {a} and the associated spectral subbundle is 2-dimensional. This follows

easily from (2)x. We now take the case \a\ > p. In (2.2) we have determined two

invariant circles £2, = ß,(p, a) = {ip¡(p, a)} X T1, i = 1,2, for (1). Along the solu-

tions o(\f/¡, <t>, u,a,t) equation (2)x is given by

.       ((a(l+2c) -co       \ \
.    — XI \u,

a a(l + 2c)

where we have taken c to be c(p,a) = cos \p2(u, a) = yl — (p/a) . The upper

(lower) sign refers to ^x (^ respectively). For any solution of (1) with initial value

£ = (t//, <j>), \px ¥= tp ¥= \p2, the positive hmit set is fil5 the negative limit set fi2.

Because of Lemma 1 of [6] we can conclude that the points a(l + 2c) belong to

2N(£, p, a). Since the dimensions of the stable subbundle over ßj and the unstable

over ñ2 are both 2, Theorem 3.2 of [5] implies that the interval with a(l + 2c) as

endpoints belongs to 2^(1, p, a). For any X outside this interval (2)x admits an

exponential dichotomy. In summarizing we can say that ~ZN(u, a) is given by {a} for

0 < |a| <p and by

[a(l - 2c(u, a)), a(l + 2c(p, a))]    for a > u > 0,

1 [a(l + 2c(u, a)), a(l - 2c(p, a))]    for -a > u > 0,

and that the associated spectral subbundle is 2-dimensional (cf. [5, 6]).

3.3 The tangential spectrum 2T(p, a). For 0 < \a\ < p the 2-torus M2(u, a) is

minimal and the only bounded solution of (3)x, X # 0, is the trivial solution. For

X = 0 all solutions of (3)x are bounded. Therefore the tangential spectrum 2r(p, a)

is equal to {0}. For \a\ > u > 0 there are two invariant circles £2,(p, a) on M2(u, a).

Again, for any solution of (1) with initial value £ = (\p,4>), \px ¥= \p # i^2, the positive

limit set is flj, the negative ß2. The same arguments as in (3.2) lead to

2r(p, a) = [-^r|a|c(p, a), q\a\c(u, a)\    for \a\ > u > 0.

3.4 Consequences. (1) From (3.2) it follows that for p = 0, a ¥= 0 the normal

spectrum is an interval containing 0 in its interior. For any fixed positive p, 2N(u, a)

is in R" for -(2//3)p < a < 0, reduces to {0} for a = 0 and is in R+ for

0 < a < (2/ J3)u. Thus the underlying invariant 2-torus M2(p, a) is normally

attractive for -(2/ \Í3)u < a < 0 and normally repulsive for 0 < a < (2/ 'J3)u. As
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a increases (decreases) through (2/ v^ )p (-(2/ ^3)p) the left (right) endpoint of

S^p, a) crosses through 0 again. This proves (1.3.1) and (1.3.2).

(2) The spectra 2,N(u, a) and 2r(p, a) are disjoint for

0<|«|<(l-(l/(i7 + 2))2)"1/2p

and M2(u, a) is normally hyperbolic for these (p, a). Note that the set of (p, a)

defined by the above inequality contains the regions I+ and I " and parts of II+ and

II".

(3) It is of interest to note that for a > (2/ v/3~)p, the left endpoint of 2r(p, a) is

always smaller than the one of 2N(u, a) so that the tangential flow at the attractor

on M2(u, a) is faster than the normal flow. That this leads to a cusp of the pinched

3-torus has been shown in (2.6). For a < -(2/ ^3)u the same holds for q > 4. For

q = 2 or q = 3 (and p > 0) the pinched 3-torus is flat where it is pinched.
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