RESONANCE AND BIFURCATION OF HIGHER-DIMENSIONAL TORI

DIETRICH FLOCKERZI

ABSTRACT. By means of an example it is shown that a supercritical bifurcation of an invariant 2-torus into an invariant 3-torus prevailing in the case of nonresonance may be replaced by a transcritical bifurcation into a pinched invariant 3-torus in the case of resonance. The connections of these bifurcation phenomena with the properties of the spectrum of the underlying invariant 2-torus are discussed.

1. Statement of the results.

1.1 *Introduction*. In this note we propose a local study of the following smooth 2-parameter system

(S)
$$\begin{aligned} \dot{x} &= A(y,\alpha)x - \|x\|_2^2 x, & x \in \mathbf{R}^2, \\ \dot{y}_1 &= g(y,\mu,\alpha), & \dot{y}_2 &= 1, & y &= \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in T^2, \end{aligned}$$

describing the flow of a 4-dimensional system of ordinary differential equations in a small neighborhood of the invariant 2-torus $M^2(\mu, \alpha) = \{x = 0\}$. T^2 denotes the standard 2-torus so that y is defined modulo 2π . For a fixed irrational ω and for relatively prime integers $p \neq 0$ and q > 0 we take A and g to be

$$A: T^{2} \times (-\overline{\alpha}, \overline{\alpha}) \to \mathbf{R}^{2} \qquad (\overline{\alpha} > 0 \text{ sufficiently small}),$$

$$A(y, \alpha) = \overline{A}(\alpha) + 2\alpha \operatorname{diag}(\cos(qy_{1} - py_{2})), \qquad \overline{A}(\alpha) = \begin{pmatrix} \alpha & -\omega \\ \omega & \alpha \end{pmatrix},$$

and

g:
$$T^2 \times [0, \overline{\mu}] \times (-\overline{\alpha}, \overline{\alpha}) \to T^1$$
 ($\overline{\mu} > 0$ sufficiently small),
g(y, μ, α) = $p/q + \mu + \alpha \sin(qy_1 - py_2)$.

Thus $\alpha \in (-\bar{\alpha}, \bar{\alpha})$ is to be considered as the bifurcation parameter and $\mu \in [0, \bar{\mu}]$ as an additional parameter varying the rotation vector on the invariant 2-torus. We restrict our attention to positive μ since the case of negative μ can be transformed to this case by changing the sign of y_1 and p. Since $M^2(\mu, 0)$ is a vague attractor for (S) and since the form of the mean value $\bar{A}(\alpha)$ of $A(y, \alpha)$ seems to suggest that $M^2(\mu, \alpha)$ is stable for negative and unstable for positive α , one may expect a supercritical bifurcation of a stable invariant 3-torus $M^3(\mu, \alpha)$ from the 2-torus $M^2(\mu, \alpha)$ at $\alpha = 0$. This is indeed the case for $\mu > 0$ due to the fact that for positive μ the normal portion $\Sigma^N(\mu, \alpha)$ of the spectrum of $M^2(\mu, \alpha)$ (cf. [7]) crosses with α

Received by the editors December 27, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 58F14, 34C45.

from \mathbf{R}^- to \mathbf{R}^+ . The situation in the resonant case $\mu = 0$ is different in so far as $\Sigma^N(0, \alpha)$ always contains 0 in its interior if α is nonzero. This leads to a two-sided bifurcation of a pinched, stable invariant 3-torus $M^{3-}(0, \alpha)$ at $\alpha = 0$.

1.2 The bifurcations and the attractors of (S). To describe our results in more detail we first define the rays

$$L_1^{\pm} = \left\{ (\mu, \alpha) \in (0, \overline{\mu}) \times (-\overline{\alpha}, \overline{\alpha}) \colon \pm \alpha = \mu \right\},$$

$$L_2^{\pm} = \left\{ (\mu, \alpha) \in (0, \overline{\mu}) \times (-\overline{\alpha}, \overline{\alpha}) \colon \pm \alpha = (2/\sqrt{3})\mu \right\}.$$

We are interested in a local analysis and thus in the restrictions of these sets to a sufficiently small neighborhood U of $(\mu, \alpha) = (0, 0)$. We denote these restrictions to U by the same symbols. In Figure 1 we have sketched these bifurcation curves L_i^{\pm} and have introduced the regions I $^{\pm}$, II $^{\pm}$ and III $^{\pm}$.

FIGURE 1

In §2 of this note we prove the following changes in the structure of the attractors of system (S):

- (1.2.1) The positive μ -axis corresponds to the Hopf-type bifurcation of a unique invariant 3-torus $M^3(\mu, \alpha)$ from $M^2(\mu, \alpha)$. The 2-torus $M^2(\mu, 0)$ is a vague attractor for nonnegative μ . The 3-torus $M^3(\mu, \alpha)$ exists for all $(\mu, \alpha) \in I^+ \cup L_1^+ \cup II^+$. In region I^+ it is the only attractor of (S), the 2-torus $M^2(\mu, \alpha)$ is a repellor.
- (1.2.2) The ray L_1^+ corresponds to a saddle node bifurcation creating q invariant 2-tori on $M^3(\mu, \alpha)$. (If $M^3(\mu, \alpha)$ is identified with a circle, these 2-tori are saddle nodes.) On L_1^+ and in II +, the q invariant 2-tori on $M^3(\mu, \alpha)$ are the only attractors of (S). $M^2(\mu, \alpha)$ is still a repellor.
- (1.2.3) The ray L_2^+ corresponds to Naimark-Sacker bifurcations causing the pinching of the 3-torus $M^3(\mu, \alpha)$ to $M^{3-}(\mu, \alpha)$. On L_2^+ , in III $^+$ and on the positive α -axis, the attractors of (S) are the q invariant circles along which $M^{3-}(\mu, \alpha)$ coincides with $M^2(\mu, \alpha)$.
 - (1.2.4) In region I⁻, $M^2(\mu, \alpha)$ is the attractor of (S).

- (1.2.5) The ray L_1^- corresponds to another saddle node bifurcation creating q invariant circles of saddle node type on $M^2(\mu, \alpha)$. On L_1^- , in II⁻ and on L_2^- , the only attractors of (S) are the q invariant circles on $M^2(\mu, \alpha)$.
- (1.2.6) Finally, the ray L_2^- represents the locus of another Naimark-Sacker bifurcation. In region III⁻ and on the negative α -axis, there exists a pinched invariant 3-torus M^3 - (μ, α) besides the invariant 2-torus $M^2(\mu, \alpha)$. The only attractors of (S) are the q invariant circles along which M^3 - (μ, α) coincides with $M^2(\mu, \alpha)$.
- 1.3 Spectral properties of $M^2(\mu, \alpha)$. In §3 we discuss the behavior of the normal and the tangential portions of the spectrum of the invariant 2-torus $M^2(\mu, \alpha)$ in dependence of μ and α . In particular we show that the bifurcation of the pinched 3-torus $M^{3-}(\mu, \alpha)$ into the full 3-torus $M^{3}(\mu, \alpha)$ (when crossing L_2^+ from III⁺ to II⁺) and the annihilation of the pinched 3-torus $M^{3-}(\mu, \alpha)$ (when crossing L_2^- from III⁻ to II⁻) is due to:
- (1.3.1) for $(\mu, \alpha) \in \text{III}^{\pm}$, zero is in the interior of the normal spectrum $\Sigma^{N}(\mu, \alpha)$ of $M^{2}(\mu, \alpha)$, and
- (1.3.2) for $(\mu, \alpha) \in II^+(II^-)$, the left (right) endpoint of $\Sigma^N(\mu, \alpha)$ has crossed from \mathbf{R}^- to \mathbf{R}^+ (or from \mathbf{R}^+ to \mathbf{R}^- , respectively). The bifurcations on $L_2^+(L_2^-)$ thus arise because invariant circles on $M^2(\mu, \alpha)$ which are normally attractive in region III⁺ (II⁻) are normally repulsive in II⁺ (III⁻). These changes in normal attractivity cause bifurcations of invariant 2-tori from these invariant circles (Naimark-Sacker bifurcations).

2. The bifurcations and the attractors of (S).

2.1 The reduction to dimension 2. By introducing polar coordinates (r, θ) for x in (S) and by changing coordinates on the underlying 2-torus via

$$\begin{pmatrix} \psi \\ \phi \end{pmatrix} = \begin{pmatrix} q & -p \\ a & b \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \quad a, b \in \mathbb{Z}, qb + ap = 1,$$

we obtain the following system in cylindrical coordinates:

(S1)
$$\dot{r} = \alpha (1 + 2\cos\psi)r - r^3, \quad \dot{\theta} = \omega, \\ \dot{\psi} = q\mu + q\alpha\sin\psi, \quad \dot{\phi} = 1/q + a\mu + a\alpha\sin\psi.$$

The coordinates are chosen as in Figure 2 so that $\{r=0\}$ represents the 2-torus $M^2(\mu, \alpha)$. The (r, ψ) system is independent of θ and ϕ and can be analyzed

FIGURE 2

separately. For sufficiently small $\bar{\mu}$ and $\bar{\alpha}$, $\dot{\phi}$ is positive and bounded away from 0. Hence one obtains the full 4-dimensional picture for (S1) by adjoining a T^2 to the 2-dimensional one of the (r, ψ) -system. The corresponding figures for the "period map" on the set $\{y_2 = 0 \mod 2\pi\}$ of the original system (S) are then gotten by cutting along a ray $\psi = \text{const.}$, linearly contracting the (r, ψ) -plane into a wedge of angular width $2\pi/q$ and repeating this contracted figure in each of the q wedges (cf. [4]). From now on we frequently deal with the 2-dimensional system

(S2)
$$\dot{r} = \alpha(1 + 2\cos\psi)r - r^3, \qquad \dot{\psi} = q\mu + q\alpha\sin\psi.$$

Sometimes we interpret (r, ψ) as regular polar coordinates, other times as "blown-up" polar coordinates as shown in Figure 2.

2.2 The critical points of (S2). Any trajectory starting at time t = 0 in $N = \{(r, \psi): 0 \le r \le r_0\}$ with $r_0 > \sqrt{3}$ remains for all future time in N. For $0 \le |\alpha| < \mu$ there are no critical points in N. For the other values of μ and α one has the following critical points in N:

(2.2.1)
$$(0, \psi)$$
 for $\mu = \alpha = 0, \psi \in T^1$;

(2.2.2)
$$(0, \psi_i)$$
 for $|\alpha| \ge \mu \ge 0, (\mu, \alpha) \ne (0, 0),$

where, for positive μ , $\psi_1 = \psi_1(\mu, \alpha)$ and $\psi_2 = \psi_2(\mu, \alpha)$ are the two solutions of $\dot{\psi} = 0$ with $0 < \psi_1 \le \psi_2 < 2\pi$. For positive (negative) values of α we define $\psi_1(0, \alpha)$ to be π (or 0) and $\psi_2(0, \alpha)$ to be 2π (or π , respectively). Note that on $\{r = 0\}$, $(0, \psi_1)$ is attractive, whereas $(0, \psi_2)$ is repulsive.

$$(r_1, \psi_1) \quad \text{for } \mu \leqslant \alpha \leqslant \left(2/\sqrt{3}\right)\mu \quad \text{and}$$

$$(r_2, \psi_2) \quad \text{for } \alpha \geqslant \mu, -\alpha \geqslant \left(2/\sqrt{3}\right)\mu, (\mu, \alpha) \neq (0, 0)$$

$$\left(r_i = r_i(\mu, \alpha) = \left(\alpha + 2\alpha\cos\psi_i(\mu, \alpha)\right)^{1/2}, i = 1, 2\right).$$

By considering the 1-dimensional Bernoulli-equation

(S3)
$$\frac{\partial r}{\partial \psi} = \frac{\alpha (1 + 2\cos\psi)r - r^3}{q\mu + q\alpha\sin\psi}$$

for $0 \le |\alpha| < \mu$, one is led to the conclusion that $\{r = 0\}$ is repulsive for positive and attractive for nonpositive values of α . Since $\dot{\psi}$ is positive, $\{r = 0\}$ behaves like a focus for $0 \le |\alpha| < \mu$ and like a singular node for $\mu = \alpha = 0$. By the Poincaré-Bendixson theory, one therefore obtains a periodic orbit for (S2) in N and hence an invariant 3-torus for (S) as long as α belongs to the interval $(0, \mu)$.

2.3 The $T^2 \to T^3$ bifurcation on the positive μ -axis. Following [3] we introduce the new bifurcation parameter $\varepsilon > 0$ via $\alpha = \varepsilon \beta$ and use the scaling $r \to \varepsilon r$ in (S1). Then the averaging transformation

$$\bar{r} = r - (2\varepsilon\beta/q\mu)r \cdot \sin\psi, \qquad |2\varepsilon\beta| < q\mu,$$

leads to

$$\dot{\bar{r}} = \varepsilon \bar{r} (\beta - \varepsilon \bar{r}^2) + \varepsilon^2 / \mu \, \bar{r} O(\varepsilon^2 + \beta^2),$$

which necessitates the choice $\beta = \pm \varepsilon$. By the further averaging

$$\bar{\psi} = \psi \pm (\varepsilon^2/\mu)\cos\psi, \qquad \bar{\phi} = \phi \pm (a\varepsilon^2/q\mu)\cos\psi$$

with $\varepsilon^2 < \mu$, we generate a weakly coupled system

$$\begin{split} \dot{\bar{r}} &= \varepsilon^2 \bar{r} \Big(\pm 1 - \bar{r}^2 + O(\varepsilon^2/\mu) \Big), \qquad \dot{\theta} = \omega, \\ \dot{\bar{\psi}} &= q\mu + O(\varepsilon^4/\mu), \qquad \dot{\bar{\phi}} = 1/q + a\mu + O(\varepsilon^4/\mu). \end{split}$$

Thus for each $\mu_0 > 0$ and d > 1, there is a C > 0 such that for $0 < \alpha < C\mu^d$, $0 < \mu < \mu_0$, there exists a unique smooth invariant and asymptotically stable 3-torus $M^3(\mu, \alpha)$ for system (S) (cf. [3, 2]). This shows that near, but above, the positive μ -axis system (S2) has a unique periodic orbit $C(\mu, \alpha)$. This orbit is the attractor for (S2).

2.4 The regions I^{\pm} . We now show that $C(\mu, \alpha)$ is the unique periodic orbit for (S2) not only near the μ -axis but also in all of the region I^{+} . By (2.2), (2.3) and the global results of [1], one expects $C(\mu, \alpha)$ to exist in I^{+} with a period tending to infinity as α approaches μ from below. An elementary proof of this fact which also includes the uniqueness of the periodic orbit can be derived by an analysis of (S3). (S3) has a unique attractive 2π -periodic solution for $0 < \alpha < \mu$ and no periodic solution for $-\alpha > \mu > 0$. The period of the corresponding periodic orbit of (S2) tends to infinity as α approaches μ from below. The results of (2.1)–(2.4) now lead to the phase portraits for (S2) that are shown in Figure 3.

FIGURE 3. Phase portraits of (S2) for (a) $\mu = \alpha = 0$, (b) $\mu > 0$, $\alpha = 0$, (c) $0 < \alpha < \mu(I^+)$, and (d) $-\alpha > \mu > 0(I^-)$.

2.5 The saddle node bifurcations on L_1^{\pm} and the regions II $^{\pm}$. For positive α , \dot{r} is negative outside the curve $P_{\alpha} = \{(r, \psi): r^2 = \alpha + 2\alpha \cos \psi\}$ and positive inside P_{α} . The critical points (r_i, ψ_i) of (2.2.3) are located on P_{α} and the integral rays $\psi = \psi_i(\mu, \alpha)$ (cf. (2.2.2)). For $\alpha = \mu$ they coincide, for $\alpha \in (\mu, (2/\sqrt{3})\mu)$ they are different and have a positive first component. As α approaches $(2/\sqrt{3})\mu$ from

below, (r_1, ψ_1) tends to $(0, (4/3)\pi)$ and (r_2, ψ_2) to $(\sqrt{2\alpha}, (5/3)\pi)$. See Figure 4. In our analysis we now interpret r and ψ in (S2) as regular polar coordinates and proceed to determine the type of each critical point. It will turn out that (r_1, ψ_1) is a stable node and (r_2, ψ_2) a saddle point for all (μ, α) in region II⁺. On L_1^+ these two points coincide and form a saddle node.

The eigenvalues of the linearization at (r_i, ψ_i) , i = 1, 2, are given by

$$\lambda_i^N(\mu,\alpha) = -2r_i^2(\mu,\alpha), \qquad \lambda_i^T(\mu,\alpha) = \alpha q \cos \psi_i(\mu,\alpha).$$

Associated eigenvectors with respect to the basis given by the r- and the ψ -directions are

$$v_i^N(\mu, \alpha) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad v_i^T(\mu, \alpha) = \begin{pmatrix} 2r_i \sin \psi_i(\mu, \alpha) \\ -2 + (q+4)\cos \psi_i(\mu, \alpha) \end{pmatrix}.$$

FIGURE 4. Linearizations of (S2) at (r_i, ψ_i) , i = 1, 2.

In region II +, λ_i^N is different from λ_i^T except for (μ, α) belonging to the ray

$$L_{*}^{+} = \{(\mu, \alpha) : \alpha = (1 - (2/(q+4))^{2})^{-1/2} \mu > 0\},$$

on which v_1^N and v_1^T are collinear. If we denote the angle ψ_1 , defining L_*^+ by $\psi_1^* \in (\pi, (3/2)\pi)$, the critical point (r_1, ψ_1^*) is a degenerate node. In Figure 4 we have sketched the curve P_α and the integral rays $\dot{\psi} = 0$, and have indicated the eigenspaces generated by v_i^T for (μ, α) on L_1^+ (Figure 4(a)), for (μ, α) in II⁺, below L_*^+ (Figure 4(b)), and above L_*^+ (Figure 4(c)).

Because of the results in (2.1) and (2.5), the two branches of the unstable manifold of (r_2, ψ_2) must join the critical point (r_1, ψ_1) in the region $\{(r, \psi): 0 < r < r_0\}$,

FIGURE 5. Phase portraits of (S2) (a) on L_1^+ , (b) in II $^+$ with $\psi_1 > \psi_1^*$ and (c) in II $^+$ with $\psi_1 < \psi_1^*$.

giving a homoclinic orbit in the situation of Figure 4(a) and two heteroclinic orbits for Figure 4(b), (c). In blown-up coordinates we thus have established the following: On L_1^+ and in II + one has a unique invariant circle $C(\mu, \alpha)$ in $\{(r, \psi): 0 < r < r_0\}$. The attractor of (S2) is the point $(r_1(\mu, \alpha), \psi_1(\mu, \alpha))$ on this circle. The circle $\{r = 0\}$ is repulsive. See Figure 5. For a general discussion of such a saddle node bifurcation, we refer to [2, pp. 360-362].

The problem is much easier to handle for negative values of α . A similar analysis shows that the circle $\{r=0\}$ is attractive on L_1^- , in II⁻, and on L_2^- . The attractor of (S2) is the critical point $(0, \psi_1(\mu, \alpha))$. See Figure 6. If we translate the results of 2.4 and 2.5 into the context of system (S) we have shown points (1.2.1), (1.2.2), (1.2.4) and (1.2.5).

2.6 The Naimark-Sacker bifurcations on L_2^{\pm} and the regions III $^{\pm}$. On L_2^{+} the critical point (r_1, ψ_1) undergoes a saddle node bifurcation with the critical point $(0, \psi_1)$ so that in region III $^{+}$ and on the positive α -axis, the unstable manifold of (r_2, ψ_2) joins the critical point $(0, \psi_1)$ on the circle $\{r = 0\}$. The invariant circle $C(\mu, \alpha)$ now develops a cusp at $(0, \psi_1)$. See Figure 7.

We would like to remark that this saddle node bifurcation for the 2-dimensional system (S2) is, in fact, a Naimark-Sacker bifurcation for the 4-dimensional system

FIGURE 6. Phase portraits of (S2) (a) on L_1^- , and (b) in II⁻ and on L_2^- .

FIGURE 7. Phase portraits of (S2) (a) in III⁺, and (b) for $\mu = 0$, $\alpha > 0$.

(S) or (S1). This follows immediately from an analysis of (S1). For ψ_1 close to $(4/3)\pi$ and $\psi_1 > (4/3)\pi$, the circle $\{(\psi, \phi): \psi = \psi_1\}$ is repulsive; for $\psi_1 \le (4/3)\pi$, it is attractive. This leads to the contraction of the 2-torus $\{(r, \theta, \psi, \phi): r = r_1, \psi = \psi_1\}$ to the circle $\{(\psi, \phi): \psi = \psi_1\}$ when ψ_1 decreases through $(4/3)\pi$.

For $-\alpha > (2/\sqrt{3})\mu \ge 0$ the critical points of (S2) are the stable node $(0, \psi_1)$ and the saddle points $(0, \psi_2)$ and (r_2, ψ_2) . On L_2^- the critical points $(0, \psi_2)$ and (r_2, ψ_2) coincide and form a saddle node; in III⁻ and on the negative α -axis r_2 is positive. As above, the unstable manifold of (r_2, ψ_2) joins the node $(0, \psi_1)$. See Figure 8. Again, the translation into the 4-dimensional context of system (S) yields the claims of (1.2.3) and (1.2.6).

FIGURE 8. Phase portraits for (S2) (a) for $\mu = 0$, $\alpha < 0$, and (b) in III⁻.

3. Spectral properties of $M^2(\mu, \alpha)$.

3.1 Preliminaries. We start by repeating the notions of the spectrum of an invariant manifold that are relevant for our analysis. For more details we refer to [6 and 7]. We take ψ and ϕ as the coordinates on the invariant 2-torus $M^2(\mu, \alpha)$ and denote the flow on $M^2(\mu, \alpha)$ generated by

(1)
$$\dot{\xi} = \begin{pmatrix} q\mu + q\alpha\sin\psi \\ \frac{1}{q} + a\mu + a\alpha\sin\psi \end{pmatrix}, \qquad \xi = \begin{pmatrix} \psi \\ \phi \end{pmatrix} \in T^2,$$

by $\sigma(\xi, \mu, \alpha, t) = ({}^{\Psi}_{\Phi})(\xi, \mu, \alpha, t)$, $\sigma(\xi, \mu, \alpha, 0) = \xi$. We choose $\bar{\mu} > 0$ and $\bar{\alpha} > 0$ so that $\dot{\phi}$ is positive for all $(\xi, \mu, \alpha) \in T^2 \times [0, \bar{\mu}] \times [-\bar{\alpha}, \bar{\alpha}]$. Then we define the λ -shifted variational equations along σ for the normal and the tangential directions by

$$(2)_{\lambda}$$

$$\dot{u} = (A(\Psi(\xi, \mu, \alpha, t), \alpha) - \lambda I)u, \qquad A(\psi, \alpha) = \begin{pmatrix} \alpha + 2\alpha\cos\psi & -\omega\\ \omega & \alpha + 2\alpha\cos\psi \end{pmatrix},$$

$$(3)_{\lambda} \qquad \dot{v} = (B(\Psi(\xi, \mu, \alpha, t), \alpha) - \lambda I)v, \qquad B(\psi, \alpha) = \begin{pmatrix} q\alpha\cos\psi & 0\\ a\alpha\cos\psi & 0 \end{pmatrix},$$

respectively. For fixed $\xi \in T^2$ the normal portion $\Sigma^N(\xi, \mu, \alpha)$ and the tangential portion $\Sigma^T(\xi, \mu, \alpha)$ along the solution $\sigma(\xi, \mu, \alpha, t)$ of (1) are then

$$\Sigma^{N}(\xi, \mu, \alpha) = \{\lambda \in \mathbf{R}: (2)_{\lambda} \text{ does not admit an exponential dichotomy}\},$$

 $\Sigma^{T}(\xi, \mu, \alpha) = \{\lambda \in \mathbf{R}: (3)_{\lambda} \text{ does not admit an exponential dichotomy}\}.$

The normal portion $\Sigma^N(\mu, \alpha)$ and the tangential portion $\Sigma^T(\mu, \alpha)$ of the spectrum of the 2-torus $M^2(\mu, \alpha)$ are then the unions

$$\Sigma^{N}(\mu,\alpha) = \bigcup_{\xi \in T^{2}} \Sigma^{N}(\xi,\mu,\alpha), \qquad \Sigma^{T}(\mu,\alpha) = \bigcup_{\xi \in T^{2}} \Sigma^{T}(\xi,\mu,\alpha).$$

3.2 The normal spectrum $\Sigma^N(\mu, \alpha)$. For $0 \le |\alpha| < \mu$ the normal spectrum $\Sigma^N(\mu, \alpha)$ is equal to $\{\alpha\}$ and the associated spectral subbundle is 2-dimensional. This follows easily from $(2)_{\lambda}$. We now take the case $|\alpha| > \mu$. In (2.2) we have determined two invariant circles $\Omega_i = \Omega_i(\mu, \alpha) = \{\psi_i(\mu, \alpha)\} \times T^1$, i = 1, 2, for (1). Along the solutions $\sigma(\psi_i, \phi, \mu, \alpha, t)$ equation $(2)_{\lambda}$ is given by

$$\dot{u} = \left(\begin{pmatrix} \alpha(1 \mp 2c) & -\omega \\ \omega & \alpha(1 \mp 2c) \end{pmatrix} - \lambda I \right) u,$$

where we have taken c to be $c(\mu, \alpha) = \cos \psi_2(\mu, \alpha) = \sqrt{1 - (\mu/\alpha)^2}$. The upper (lower) sign refers to ψ_1 (ψ_2 , respectively). For any solution of (1) with initial value $\xi = (\psi, \phi)$, $\psi_1 \neq \psi \neq \psi_2$, the positive limit set is Ω_1 , the negative limit set Ω_2 . Because of Lemma 1 of [6] we can conclude that the points $\alpha(1 \mp 2c)$ belong to $\Sigma^N(\xi, \mu, \alpha)$. Since the dimensions of the stable subbundle over Ω_1 and the unstable over Ω_2 are both 2, Theorem 3.2 of [5] implies that the interval with $\alpha(1 \mp 2c)$ as endpoints belongs to $\Sigma^N(\xi, \mu, \alpha)$. For any λ outside this interval (2) $_{\lambda}$ admits an exponential dichotomy. In summarizing we can say that $\Sigma^N(\mu, \alpha)$ is given by $\{\alpha\}$ for $0 \le |\alpha| \le \mu$ and by

$$\Sigma^{N}(\mu, \alpha) = \begin{cases} \left[\alpha(1 - 2c(\mu, \alpha)), \alpha(1 + 2c(\mu, \alpha))\right] & \text{for } \alpha > \mu \geqslant 0, \\ \left[\alpha(1 + 2c(\mu, \alpha)), \alpha(1 - 2c(\mu, \alpha))\right] & \text{for } -\alpha > \mu \geqslant 0, \end{cases}$$

and that the associated spectral subbundle is 2-dimensional (cf. [5, 6]).

3.3 The tangential spectrum $\Sigma^T(\mu, \alpha)$. For $0 \le |\alpha| < \mu$ the 2-torus $M^2(\mu, \alpha)$ is minimal and the only bounded solution of $(3)_{\lambda}$, $\lambda \ne 0$, is the trivial solution. For $\lambda = 0$ all solutions of $(3)_{\lambda}$ are bounded. Therefore the tangential spectrum $\Sigma^T(\mu, \alpha)$ is equal to $\{0\}$. For $|\alpha| > \mu \ge 0$ there are two invariant circles $\Omega_i(\mu, \alpha)$ on $M^2(\mu, \alpha)$. Again, for any solution of (1) with initial value $\xi = (\psi, \phi), \psi_1 \ne \psi \ne \psi_2$, the positive limit set is Ω_1 , the negative Ω_2 . The same arguments as in (3.2) lead to

$$\Sigma^{T}(\mu, \alpha) = [-q|\alpha|c(\mu, \alpha), q|\alpha|c(\mu, \alpha)] \text{ for } |\alpha| > \mu \geqslant 0.$$

3.4 Consequences. (1) From (3.2) it follows that for $\mu=0$, $\alpha\neq 0$ the normal spectrum is an interval containing 0 in its interior. For any fixed positive μ , $\Sigma^N(\mu,\alpha)$ is in \mathbf{R}^- for $-(2/\sqrt{3})\mu < \alpha < 0$, reduces to $\{0\}$ for $\alpha=0$ and is in \mathbf{R}^+ for $0<\alpha<(2/\sqrt{3})\mu$. Thus the underlying invariant 2-torus $M^2(\mu,\alpha)$ is normally attractive for $-(2/\sqrt{3})\mu < \alpha < 0$ and normally repulsive for $0<\alpha<(2/\sqrt{3})\mu$. As

 α increases (decreases) through $(2/\sqrt{3})\mu$ ($-(2/\sqrt{3})\mu$) the left (right) endpoint of $\Sigma^{N}(\mu, \alpha)$ crosses through 0 again. This proves (1.3.1) and (1.3.2).

(2) The spectra $\Sigma^{N}(\mu, \alpha)$ and $\Sigma^{T}(\mu, \alpha)$ are disjoint for

$$0 < |\alpha| < (1 - (1/(q+2))^2)^{-1/2}\mu$$

and $M^2(\mu, \alpha)$ is normally hyperbolic for these (μ, α) . Note that the set of (μ, α) defined by the above inequality contains the regions I^+ and I^- and parts of II^+ and II^- .

(3) It is of interest to note that for $\alpha > (2/\sqrt{3})\mu$, the left endpoint of $\Sigma^T(\mu, \alpha)$ is always smaller than the one of $\Sigma^N(\mu, \alpha)$ so that the tangential flow at the attractor on $M^2(\mu, \alpha)$ is faster than the normal flow. That this leads to a cusp of the pinched 3-torus has been shown in (2.6). For $\alpha < -(2/\sqrt{3})\mu$ the same holds for $q \ge 4$. For q = 2 or q = 3 (and $\mu > 0$) the pinched 3-torus is flat where it is pinched.

REFERENCES

- 1. J. C. Alexander and J. A. Yorke, Global bifurcation of periodic orbits, Amer. J. Math. 100 (1978), 263-292.
 - 2. S. N. Chow and J. K. Hale, Methods of bifurcation theory, Springer-Verlag, New York, 1983.
- 3. D. Flockerzi, Generalized bifurcation of higher dimensional tori, J. Differential Equations 55 (1984), 346-367.
 - 4. K. R. Meyer, Tori in resonance, Univ. of Minnesota preprint, 1983.
- 5. R. J. Sacker, Existence of dichotomies and invariant splittings for linear differential systems. IV, J. Differential Equations 27 (1978), 106-137.
- 6. R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations 27 (1978), 320-358.
 - 7. G. R. Sell, Bifurcation of higher dimensional tori, Arch. Rational Mech. Anal. 69 (1979), 199-230.

Mathematisches Institut, Universität Würzburg, D-8700 Würzburg, Federal Republic of Germany