MANIFOLDS M^n OF RANK n-1

D. TISCHLER

ABSTRACT. The determination of which closed orientable C^2 *n*-manifolds have rank n-1 is completed.

 M^n will denote a closed orientable C^2 manifold. The rank of M^n is defined to be the maximal number of independent commuting vector fields on M^n . M^n has rank n-1 is equivalent to the existence on M^n of a C^2 locally free \mathbf{R}^{n-1} action. In Theorem 1 we determine which manifolds admit free $T^k \times \mathbf{R}^l$ actions, where k+l=n-1. Combining Theorem 1 with several previously known results about manifolds of rank n-1, we obtain

THEOREM 2. M^n has rank n-1 if and only if M^n is homeomorphic to a T^{n-1} bundle over S^1 .

THEOREM 1. Suppose $T^k \times \mathbb{R}^l$ acts freely on M^{k+l+1} . If $l \ge 2$, then M^{k+l+1} is homeomorphic to the torus T^{k+l+1} . If l = 1 then M^{k+2} is a principal T^k bundle over T^2 .

PROOF OF THEOREM 2. Sacksteder [Sa], Chatelet and Rosenberg [CR], and the author [T] give a detailed account of prior results about rank n-1 manifolds. We will summarize these results very briefly. In [Sa] it is shown that a locally free \mathbb{R}^{n-1} action without compact orbits determines a free $T^k \times \mathbb{R}^{n-k-1}$ action for some k. By Theorem 1 we get that M^n is a T^{n-1} bundle over S^1 (the principal T^k bundle is trivial over an S^1 factor of T^2). In [CR] it is shown that a locally free \mathbb{R}^{n-1} action with a compact orbit is a T^{n-1} bundle over S^1 and any such bundle admits such an action.

PROOF OF THEOREM 1. We briefly recall part of the discussion in [T]. M^{k+l+1} is a principal T^k bundle over $B = M^{k+l+1}/T^k$. The $T^k \times \mathbb{R}^l$ action on M^{k+l+1} projects to a free \mathbb{R}^l action on B. Results of Novikov [N], Rosenberg [R], and Joubert and Moussu [JM] show that B is homeomorphic to T^{l+1} . There are independent commuting vector fields \tilde{X}_i on M^{k+l+1} which commute with the T^k action and project to I independent commuting vector fields X_i on B. There exists a connection on this T^k bundle for which all \tilde{X}_i are horizontal. It will be seen that it suffices to prove Theorem 1 in the case k=1 since the T^k bundle is a fiber product of K^k bundles. Let Ω be the curvature form for the S^1 bundle. Then $\Omega(\tilde{X}_i, \tilde{X}_i) = 0$ for

Received by the editors May 3, 1984.
1980 Mathematics Subject Classification. Primary 57R25, 57R30.

all $1 \le i, j \le l$. Ω projects to a closed 2-form α on B such that the cohomology class $[\alpha]$ is the Chern class of the S^1 bundle. Let $j: \mathbf{R}^l \to B$ denote the inclusion of an \mathbf{R}^l orbit. Then $j^*\alpha = 0$ because $\alpha(X_i, X_j) = \Omega(\tilde{X}_i, \tilde{X}_j)$.

By Sacksteder [Sa] there is a transversal invariant measure for the orbit foliation of the \mathbf{R}^I action on B since the simply connected leaves have no holonomy. According to Ruelle and Sullivan [RS, p. 320] and Sullivan [Su, I, §3], the invariant measure allows one to define a foliation cycle Z: $H^I(B; \mathbf{R}) \to \mathbf{R}$ as follows: Let η be a closed I-form on B such that $\eta = \sum \eta_i$, where each η_i is supported in a foliation flow box of the form $D^I \times D^I$, where $D^I \times \{y\}$ is a component of the intersection of a leaf with the flow box. One integrates η_i over each $D^I \times \{y\}$ (the foliation is oriented by the \mathbf{R}^I action), and the resulting function of y is then integrated against the invariant measure on D^I . One adds the results from each flow box to obtain $Z([\eta])$. The result depends only on the oriented foliation and the invariant measure.

Let $\eta = \alpha \wedge \beta$, where β is a closed (l-2)-form and α denotes the Chern form as above. Then $Z([\alpha \wedge \beta]) = 0$ because $j^*(\alpha \wedge \beta) = 0$, where j is the inclusion of any leaf in β .

If the foliation is defined by a closed 1-form ω , then ω defines a transversal invariant measure and, hence, a foliation cycle Z. By Sullivan [Su, Theorem I.13] $[\omega] \in H^1(B; \mathbf{R})$ corresponds to Z by duality, i.e., $Z([\eta]) = \int_M \omega \wedge \eta$. By [Sa] there is a change of atlas on B in which the invariant measure for the orbit foliation above is given by a closed 1-form ω . The change of atlas does not change the invariant measure or the foliation cycle. Although α may not be differentiable in the new atlas, the Chern class $[\alpha]$ remains unchanged.

By the discussion in the above two paragraphs we see that $[\omega] \wedge [\alpha] \wedge [\beta] = 0$ for any β . Therefore, $[\omega] \wedge [\alpha] = 0$ in $H^3(B; \mathbb{R})$.

Since B is homemorphic to T^{l+1} , we have that $H^*(B; \mathbf{R})$ is the exterior algebra on $H^1(B; \mathbf{R})$. Let f, e_1, \ldots, e_l be a basis for $H^1(B; \mathbf{Z})$. We can write $[\omega] = \lambda [f + \sum_{i=1}^{l} \lambda_i e_i]$ for some real numbers λ, λ_l . We can write

$$[\alpha] = \sum_{1 \leq i < j \leq l} n_{ij} e_i \wedge e_j + \sum_{1 \leq s \leq l} m_s e_s \wedge f,$$

where n_{ij} and m_s are integers (the Chern class is an integral class). Assuming $l \ge 2$, the equation $[\omega] \wedge [\alpha] = 0$ in $H^3(B; \mathbf{R})$ implies that $n_{ij} + \lambda_i m_j - \lambda_j m_i = 0$ for all $1 \le i < j \le l$.

Let $F, E_t, 1 \le t \le l$, be the basis for $H_1(B; \mathbb{Z})$ dual to f, e_t . Let $c_{ij} = n_{ij}F + m_jE_i - m_iE_j$. Then $\int_{c_{ij}} \omega = 0$. By Rosenberg [**R**, Theorem 5] since the leaves are simply connected, either $c_{ij} = 0$ or c_{ij} is homotopic to a loop which is transverse to the orbits. Since $\int_{c_{ij}} \omega = 0$, the loop cannot be transverse to the orbits. Hence $c_{ij} = 0$, which means $n_{ij} = 0$, $m_i = 0$, $m_j = 0$ for all $1 \le i < j \le l$. Therefore, $[\alpha] = 0$ and the S^1 bundle is trivial. Therefore, the original T^k bundle is trivial and M^{k+l+1} is homeomorphic to $T^k \times T^{l+1}$.

REMARK. The above result of Rosenberg corresponds to the fact that the periods of the 1-form ω are independent when **R** is viewed as a vector space over the rationals. That is why there are no nonzero integral classes in the kernel of $c \to \int_{\mathcal{E}} \omega$.

160 D. TISCHLER

When l = 1, $B = T^2$ and M^{k+2} is a principal T^k bundle over T^2 . These manifolds admit a free $T^k \times \mathbb{R}$ action (see [T]). This completes the proof of Theorem 1.

REFERENCES

- [CR] G. Chatelet and H. Rosenberg, Manifolds which admit Rⁿ actions, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 245-260.
- [JM] G. Joubert and R. Moussu, Feuilletage sans holonomie d'une variété fermée, C. R. Acad. Sci. Paris, 270 (1970), A507-A509.
 - [N] S. P. Novikov, Topology of foliations, Trudy Moscov. Math. Obsch. 14 (1965), 248-278.
 - [R] H. Rosenberg, Foliations by planes, Topology 7 (1968), 131-138.
 - [RS] D. Ruelle and D. Sullivan, Currents, flows and diffeomorphisms, Topology 14 (1975), 319-327.
 - [Sa] R. Sacksteder, Foliations and pseudogroups, Amer. J. Math. 87 (1965), 79-102.
- [Su] D. Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math. 36 (1976), 225-255.
 - [T] D. Tischler, Locally free actions of \mathbb{R}^{n-1} on \mathbb{M}^n without compact orbits, Topology 13 (1974), 215–217.

DEPARTMENT OF MATHEMATICS, CUNY, QUEENS COLLEGE, FLUSHING, NEW YORK 11367