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SOLVABILITY OF DIFFERENTIAL EQUATIONS WITH LINEAR

COEFFICIENTS OF NILPOTENT TYPE

RAINER FELIX

Abstract. Let L be the vector field on R" associated with a real nilpotent

(n x «(-matrix. It is shown that L regarded as a differential operator defines a

surjective mapping of the space if" of tempered distributions onto itself; i.e.

i.y'(R" ) = y"(R" ). Replacing &" by the space B' of ordinary distributions, this is

not true in general.

1. Introduction. Let L be the infinitesimal transformation on R" associated with a

real (zz X n)-matrix X; i.e. L is given by

L<p(x) = j-^e-'^U = - í (Xx)^(x),
i = i '

<p G C°°(R"), x g R", (Ajc), the z'th component of Xx. Let us regard L as a linear

mapping of 3d into itself, where 83 is the space of all C°°-functions with compact

support on R". Furthermore, we also regard Lasa linear mapping of 3d' into itself

defined in the usual way by continuous extension, where 3d' is the dual space of 2>,

which is the space of (ordinary) distributions. The distributions annihilating the

image L33 of L are just the distributions invariant under e'x, t g R. We write

Q>' = (L3>y.x      \        I

We ask the following questions closed related with each other:

(i) Is Led closed in 31

(ii) How do we characterize the invariant distributions? Is there a canonical

fundamental set?

(iii) Is the differential operator L solvable in some sense? That means: When has

the equation Lu = fa solution w?

Essentially this is a special case of the problem investigated in [9]. Nevertheless, it

seems to be very difficult to answer these questions in general. (See the examples

below.)

In [9], questions (i) and (ii) are studied in a more general framework: Let M be a

difierentiable manifold and SCa Lie algebra of infinitesimal transformations on X.

Then the set Div(Sf) of all finite sums £F,cp,, where L, g if and <p¡ g @i(M), is

characterized in some special situations. Particularly, if at each point of M the vector
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fields in=S"give an m-dimensional subspace of the tangent space to M, it is claimed in

[9, Theorem 2], that (under some additional assumptions)

(a) Div(Sf) is closed;

(b) g g 33(M) belongs to L)iv(Se) iff g is annihilated by the invariant measures on

the integral manifolds.

In [5, §4], a counterexample to (b) is given. (See also [1, §2.1] for new versions of [9,

Theorem 2]; see [2-4].) In Example 2 we shall see that (a) is false, too.

Coming back to our special situation, we deal with the case that X is a nilpotent

matrix. In view of Example 2 we are suggested to work with S?and Sf" rather than

with 33 and 33', where y is the Schwartz space of rapidly decreasing smooth functions

and £/" its dual space, which is the space of tempered distributions. Working with £f

and S/" we get satisfactory answers to our questions.

Let us state the results: We call a pair (v, w) of vectors in R" ^-admissible if v # 0

and Xw + 0. For A'-admissible pairs (v, w) and for integer k ^ 0 we define the

tempered invariant distribution

#*>(♦):- [  VÎ(<p°e<x)(w)dt,       <pG^,
•'r

where v„ denotes the directional derivative. We write J(x (resp. M° ) for the set of

all TjkJ (resp. Fl)<°)). Clearly, the elements of Jt° are just the invariant measures on

the nontrivial eR ̂ -orbits in R".

Theorem. Let X be an arbitrary nonzero real nilpotent ( zz X zz )-matrix and let L be

the infinitesimal transformation associated with X.

Then LSe is closed in Se. Moreover the invariant tempered distributions can be

characterized as follows;

For rank(A")= 1 the invariant orbital measures form a fundamental set. For

rank(A') > 1 the set Jtx is fundamental. (Note that in general the invariant orbital

measures do not form a fundamental set according to [5, §1].)

Corollary. The differential operator L regarded as a mapping of Se' into itself is

surjective.

To prove the theorem, Lemma 2.2 of [6] is crucially used. For the convenience of

the reader it is cited here:

Lemma A. Suppose that R""1 = [x g R"!*! = 0} is X-invariant and contains the

kernel of X. Let L' be the infinitesimal transformation on R" * associated with the

restriction of X to R"~l. Let J( ç S^x'R") be a set of invariant tempered distributions

containing the invariant measures on the orbits in (xx #0} and satisfying the following

conditions:

(i) ¡ftp G y(R") andxxcp G J(x , then <p G Jíx ;

(ii) z/cp g M^, then the restriction of (p to R""1 belongs to L^R""1).

ThenJi±= LSe(R").

2. Examples. To explain the area of validity of the assertions in the theorem we

give two examples. Example 1 shows that the assertions do not need to be valid if X

is not nilpotent. In Example 2 we see that ,y cannot be replaced by 33 or S.
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X =

Example 1. (Compare to Example 1 of [9].) Let a, ß be real numbers with a/ß

irrational and let

/O     -a     0       0\
a       0     0       0
0       0     0     -ß

{0       0    ß       0/
Then the one-parameter-subgroup e'x, t g R, in SO(4) is not closed. By [8, Chapter

IV, Theorem D], it is easily seen that the closure L33 of L33 in 33 is just the set of all

test functions g for which jH g(bx) db = 0 for all x g R4, where 77 is the closure of

eRX in SO(4). Using a rotation invariant partition of unity we conclude that the

closure LSeof LSe in «S^is also the set of all g g ^for which JH g(bx) db = 0.

For x g R4 we write x = (y, z) where y, z g R2. By polar decomposition we have

y = r ■ e(a) where e(a)'-= (coso, sin a); similarly z = 5 • e(r). Let y be a test

function on ]0, oo[ with y(l) = 1. If h(y, z) is a C°°-function on [x g R4|

|v<| = \z\ = 1} for which /02" j2" h(e(a), e(r)) do dr = 0, then the function

g(x)'-= y(r)y(s)h(e(a), e(r)) belongs to S3 and satisfies the condition

/,, g(bx) db = 0 for all x g R4. Assuming g g L33 or g g Líe, say g = L<p, we

receive

h(e(a),e(r)) = a^(e(a),e(r)) + ß^(e(a),e(r))

for the C°°-function 9{y, z):= -<p(y, z) on {\y\ = \z\ = 1}. But this is not possible

for every h, when a/ß is a Liouville number [9, Example 1]. Thus neither L33 nor

LSe is closed in 33 and se, respectively, whenever a/ß is a Liouville number.

Example 2. Let

/0    0    0\
1     0     0x =

\0     1     0/
It is shown in [5] that there are invariant tempered distributions on R3, which cannot

be approximated by linear combinations of invariant orbital measures. More pre-

cisely, let «,j3,ye 33(R) such that a(0) = 0 and ß(-t) = -ß(t) for t g R and put

g(x)'-= a(xx)ß(x2)y(xi) e. 33(R3). Then g is annihilated by all invariant orbital

measures, but if k > 0 we have TtjkJ(g) # 0 for a = xxr¡, w G 33(R), such that

tj(0) =£ 0, and for suitable functions ß, y, where t; = (1,0,0) and w = (0,1,0).

Therefore, assertion (b) of Theorem 2 in [9] (see introduction) cannot be valid.

However, at this point it is not yet clear if L33 is closed or not.

To answer this question we select a, ß, y such that ß > 0 on ]0, oo[, ß(l) > 0,

y > 0, y(0) > 0, a > 0 on the open interval ]0,1[ and a = 0 outside of ]0,1[. Now

we find a sequence (a„) converging to a in 33(R) with a„ = 0 outside of ]e„, 1[,

e„ > 0. Then the sequence gv(x)'-= ap(xx)ß(x2)y(x3) converges to g(x)'- =

a(xx)ß(x2)y(x3) in ^(R3). At first we show that g„ g L33 for all v. By [6, Lemma

2.6], g„ belongs to LS". The function <pv g y for which gv = L<p„ is obtained by the

formula

Wvix) =/      gJ*l> tXl  + X2-   2~'*1  +  tX2 + *3l dt-
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<jD    E,o,-- = a(e)f°
Jc\ '^-Ye

dt>0

(See [6, §2.1].) Using this formula, the fact that <p„ has compact support is verified by

a routine calculation keeping in mind that gp(x) = 0 for xx < e„. From g„ g L33 we

receive g g L33. Assuming g g L33, say g = Lcp, our formula implies

J_
2e/ ^0

for all 0 < e < 1 because the integrand is > 0 and > 0 for t = 1/e. But this is not

possible, since <p has compact support. Thus L33 is not closed in 33.

Choosing ß in such a way that ß = 0 on a neighbourhood of 0 we get a

counterexample to assertion (a) of Theorem 2 in [9] (see introduction).

Moreover, it follows by functional analysis that the equation Lu = f does not have

a solution u g 33' for every / g 33'.

Furthermore, we can conclude that Lâis not closed in S, where ê is the space of

all infinitely differentiable functions provided with the usual topology. Suppose that

Le is closed in S. Then the mapping L: S' -* S' has a closed range. Therefore we

can find a distribution u with compact support satisfying Lu = g. Applying once

more [6, Lemma 2.6], we receive Ftp = g for the function <p g .S" given by the

previous formula. It follows that L(q> — u) = 0, therefore the distribution cp — u is

invariant. We determine r ^ 2 such that the support of u is contained in [\x¡\ < /",

z = 1,2,3}. Now let e < l/2r and select a test function ^ > 0 satisfying

^(e, 0,-l/2e) > 0 such that the support of ^ is contained in a 5-neighbourhood

of (e,0, -l/2e), where Ô is a sufficiently small positive number, 8 < e/2. For t >

2(r + l)/e the support of ^ ° e~'x is contained in {^ > e/2, x2 > z*}, therefore we

have

<«,*> = (u,^oe',x) =0    and    (cp, * ° e~'x) = 0

but (cp, 4') =£ 0. Using the invariance of <p — u we get the following contradiction:

0 =£ (cp,^) = <<p -«,■*> = (cp - u,V°e-'x) = 0.

3. Proofs. Let X be an arbitrary nilpotent (n X n)-matrix, X ¥= 0. After change of

basis we may assume that X has the form

'0

1

,

where e; g {0,1},y = 2 ,zz-l.

0

Lemma 1. Let cp g y. Assume that xxtp is annihilated by all T g J(x. (We write

Xj<p g Jf^x.) Then T^^cp) = 0 whenever vx + 0 (vx = the first component of v).

Proof. By [6, §2.4], we have the formula xxT$ = kvxT^~l) + wxT¿kJ, k > 0.

Therefore kvxT¿kKrl)(<p) + wxT¿kJ(<p) = 0. For wx = 0 the assertion follows im-

mediately. For wx ¥= 0 we conclude F^^cp) = 0 from 0 = {T^°J , xxcp) =

wi(Tvi°), (p) and proceed by induction on k.
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Lemma 2. Let <p g y. If xxtp g Jt^ then <p G M\.

Proof. By Lemma 1, we have only to prove that T$}{<p) = 0 whenever vx = 0.

Now, by Lemma 1,

0=7^,,» = / v^(<P°e<x)(w)dt

where v(,) = v + (1/v, 0,... ,0), v g N. Using the formula

we conclude

m = 0 '

-»i

m = 0 i

For )<-> oowe get

o = /" v*(<p°e'*)(tv) a = r<$i*y.

Lemma 3. Let the rank of X be equal to 1. Let <p g se. Suppose that cp g (Jfx)x

and <p(x) = 0 whenever xx = 0. Then <p G LS*.

Proof. Compare to [6, Lemma 2.5]. We get cp = xx\ where x G (^°)± • There-

fore /R x(x) dx2 = 0. Thus there is a function \p g ^such that x = a\p/ax2. We get

<p = xxd\p/dx2 = -Li^.

Lemma 4. Lei i/ze zyjzjA: of X be equal to 2 and let L' be the infinitesimal

transformation on R""1 = [x G R"!*! = 0} associated with the matrix

0. \

2

'.     ' • .

'  *„-i''0/

Then for every <p&(J(x)x the restriction cp' to R"'1 belongs to L'S"(Rnl).

Proof. Obviously it is sufficient to consider the two cases ey = 82J and ey = S3y,

y = 2,...,zz-l.

Let e, = 52 .. By Lemma 3, we have only to prove that cp'(x2, x3,...,x„) = 0

whenever x2 = 0. By assumption, for all v G N,

0 = f cp {e'xi— ,0, x3,...,xj   c7i = e/tp   — Ay+ x3,x4,...,x„   A.

For z» -> co we get / cp(0,0, i2/2 + x3,.. .,xn) dt = 0 for all x3,... ,x„. It is proved

in [6, Lemma 2.6] that from this it follows that cp(0,0, x3,... ,x„) = 0 for all

x3,.. .,xn.
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Let e = 83j. By Lemma 3, we have only to prove that <p'(x2, x3,... ,xn) = 0

whenever x3 = 0. By assumption, for all v g N and for every nonzero vector

z = (zx, z2)GR2wehave

0=j<p(e<x(^,x2,^,x4,...,xn))dt

= vj 9(7. x2 + «f. -f>%4 + tZ-2,...,X„] dt.

For v —> 00 we get / cp(0, x2 + iz2,0, x4 + tz2,.. .,xn) dt = 0 for all x2, x4,.. .,x„.

This means that the one-dimensional Radon transform of the function (x2, x4) -»

cp(0, x2,0, x4,... ,x„) is identically 0 for all x5,...,xn. Now the assertion follows.

(See [7, Chapter I, §6].)

Proof of the Theorem. For rank(^) = 1 the Theorem is just Lemma 3. For

rank( A') > 1 we prove J(\ = LSeby induction on rank^). For rank(X) = 2 the

assertion follows from Lemma A, using Lemmas 2 and 4. For rank(A') > 2 the

assertion follows from Lemma A, using Lemma 2 and the induction hypothesis.

Proof of the Corollary. By the Theorem, we only have to prove that L;Se^>£e

is injective. Now, if L<p = 0 for cp G S?, then <p must be invariant because of

.9"x = (Ly)1 ; i.e. <p is constant on the orbits. In view of the fact that "almost all"

orbits are unbounded this is not possible except for cp = 0.
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