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SOLVABILITY OF DIFFERENTIAL EQUATIONS WITH LINEAR
COEFFICIENTS OF NILPOTENT TYPE

RAINER FELIX

ABSTRACT. Let L be the vector field on R” associated with a real nilpotent
(n X n)-matrix. It is shown that L regarded as a differential operator defines a
surjective mapping of the space &’ of tempered distributions onto itself; i.e.
L¥'(R") = &’(R"). Replacing &’ by the space @’ of ordinary distributions, this is
not true in general.

1. Introduction. Let L be the infinitesimal transformation on R” associated with a
real (n X n)-matrix X; i.e. L is given by

Lo(x) = L o(e )], = - X (X2) 22 (),

i=1

¢ € C*(R"), x € R”, (Xx), the ith component of Xx. Let us regard L as a linear
mapping of 2 into itself, where 2 is the space of all C*-functions with compact
support on R”. Furthermore, we also regard L as a linear mapping of 2’ into itself
defined in the usual way by continuous extension, where 2 is the dual space of &,
which is the space of (ordinary) distributions. The distributions annihilating the
image L9 of L are just the distributions invariant under e'*, r € R. We write
2= (L2)*.

We ask the following questions closed related with each other:

(i) Is LZ closed in 27

(ii)) How do we characterize the invariant distributions? Is there a canonical
fundamental set?

(iii) Is the differential operator L solvable in some sense? That means: When has
the equation Lu = f a solution u?

Essentially this is a special case of the problem investigated in [9]. Nevertheless, it
seems to be very difficult to answer these questions in general. (See the examples
below.)

In [9], questions (i) and (ii) are studied in a more general framework: Let M be a
differentiable manifold and #a Lie algebra of infinitesimal transformations on X.
Then the set Div(&) of all finite sums Y.L,p;, where L, € Land ¢, € (M), is
characterized in some special situations. Particularly, if at each point of M the vector
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fields in Zgive an m-dimensional subspace of the tangent space to M, it is claimed in
[9, Theorem 2], that (under some additional assumptions)

(a) Div(%Z) is closed;

(b) g € 2(M) belongs to Div(Z) iff g is annihilated by the invariant measures on
the integral manifolds.

In [5, §4], a counterexample to (b) is given. (See also [1, §2.1] for new versions of [9,
Theorem 2]; see [2-4].) In Example 2 we shall see that (a) is false, too.

Coming back to our special situation, we deal with the case that X is a nilpotent
matrix. In view of Example 2 we are suggested to work with ¥ and &’ rather than
with 2 and @', where &is the Schwartz space of rapidly decreasing smooth functions
and %’ its dual space, which is the space of tempered distributions. Working with &%
and &’ we get satisfactory answers to our questions.

Let us state the results: We call a pair (v, w) of vectors in R" X-admissible if v # 0
and Xw # 0. For X-admissible pairs (v, w) and for integer k > 0 we define the
tempered invariant distribution

(0= [ vi(eeeM ) d  pe,

where v, denotes the directional derivative. We write #  (resp. #$) for the set of
all T,'%) (resp. T.'.)). Clearly, the elements of # are just the invariant measures on
the nontrivial e®*-orbits in R".

THEOREM. Let X be an arbitrary nonzero real nilpotent (n X n)-matrix and let L be
the infinitesimal transformation associated with X.

Then L% is closed in &. Moreover the invariant tempered distributions can be
characterized as follows:

For rank(X) =1 the invariant orbital measures form a fundamental set. For
rank( X) > 1 the set M y is fundamental. (Note that in general the invariant orbital
measures do not form a fundamental set according to [5, §1].)

COROLLARY. The differential operator L regarded as a mapping of &' into itself is
surjective.

To prove the theorem, Lemma 2.2 of [6] is crucially used. For the convenience of
the reader it is cited here:

LEMMA A. Suppose that R"~! = {x € R"|x, = 0} is X-invariant and contains the
kernel of X. Let L’ be the infinitesimal transformation on R"~! associated with the
restriction of X to R"™'. Let #/ C &} (R") be a set of invariant tempered distributions
containing the invariant measures on the orbits in { x, # 0} and satisfying the following
conditions:

() ifpe LR and x,9p € M+, thenp € M*

(i) if ¢ € M* , then the restriction of ¢ to R"~! belongs to L' (R"™1).

Then #+ = LS R").

2. Examples. To explain the area of validity of the assertions in the theorem we
give two examples. Example 1 shows that the assertions do not need to be valid if X
is not nilpotent. In Example 2 we see that #cannot be replaced by 2 or &.
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ExAMPLE 1. (Compare to Example 1 of [9].) Let a, 8 be real numbers with a/f8
irrational and let

0 -« 0 0

«a 0 0 0
X=1lo o0 o -8

0 0 B8 0

Then the one-parameter-subgroup e’%, ¢ € R, in SO(4) is not closed. By [8, Chapter
IV, Theorem D], it is easily seen that the closure LD of L2 in D is just the set of all
test functions g for which f, g(bx) db = 0 for all x € R*, where H is the closure of
e®¥ in SO(4). Using a rotation invariant partition of unity we conclude that the
closure L¥of L& in Zis also the set of all g € Sfor which [ 8(bx) db = 0.

For x € R* we write x = (, z) where y, z € R By polar decomposition we have
y =r-e(o) where e(o):= (coso,sing); similarly z = s - e(7). Let y be a test
function on 10,00 with y(1)=1. If A(y, z) is a C®-function on {x € R?|
|yl = |z| = 1} for which (2" [?" h(e(o), e(T))dodr =0, then the function
g(x):= y(r)y(s)h(e(o), e(t)) belongs to £ and satisfies the condition
[41 8(bx)db =0 for all x € R%. Assuming g€ LD or g€ LY, say g = Lo, we
receive

h(e(0), e(r)) = ane¥(e(0). e(r)) + B ¥(e(0), e(7))

for the C*-function ¥(y, z):= —@(y, z) on {|y| = |z| = 1}. But this is not possible

for every h, when a/f is a Liouville number [9, Example 1]. Thus neither L2 nor

L& is closed in 2 and &, respectively, whenever a /8 is a Liouville number.
ExXAMPLE 2. Let

0 0 O
X=1|1 0 0.
01 0

It is shown in [5] that there are invariant tempered distributions on R3, which cannot
be approximated by linear combinations of invariant orbital measures. More pre-
cisely, let a, B8, v € 2(R) such that «(0) = 0 and B(-t) = -B(¢) for t € R and put
g(x):= a(x;)B(x,)y(x;) € 2(R*). Then g is annihilated by all invariant orbital
measures, but if k > 0 we have T,¥)(g) # 0 for a = xfn, n € 2(R), such that
1(0) # 0, and for suitable functions B,y, where v = (1,0,0) and w = (0,1,0).
Therefore, assertion (b) of Theorem 2 in [9] (see introduction) cannot be valid.
However, at this point it is not yet clear if L is closed or not.

To answer this question we select a, 8, ¥ such that 8 > 0 on ]0, 0o[, 8(1) > O,
v = 0, ¥(0) > 0, a > 0 on the open interval ]0,1] and a = 0 outside of ]0,1[ . Now
we find a sequence (a,) converging to a in 2(R) with a, = 0 outside of Je,, 1[,
g, > 0. Then the sequence g,(x):= a,(x;)B(x,)y(x;) converges to g(x):=
a(x)B(x,)Y(x;) in D(R?). At first we show that g, € L9 for all ». By [6, Lemma
2.6], g, belongs to L& . The function ¢, € & for which g, = L, is obtained by the
formula

0 1?2
o, (x) =-£) g, | X1, tx; + x5, 5% + tx, + x5 | dt.
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(See [6, §2.1].) Using this formula, the fact that ¢, has compact support is verified by
a routine calculation keeping in mind that g,(x) = 0 for x; < ,. From g, € L9 we
receive g € LD. Assuming g € L9, say g = Lo, our formula implies

(p(e,O,—zle) = a(e)/(;oo ,B(te)y(%ze - %) dt>0

for all 0 < & < 1 because the integrand is > 0 and > 0 for 1 = 1 /. But this is not
possible, since ¢ has compact support. Thus L2 is not closed in 2.

Choosing B in such a way that 8 =0 on a neighbourhood of 0 we get a
counterexample to assertion (a) of Theorem 2 in [9] (see introduction).

Moreover, it follows by functional analysis that the equation Lu = f does not have
a solution u € @’ for every f € 9.

Furthermore, we can conclude that L& is not closed in &, where &'is the space of
all infinitely differentiable functions provided with the usual topology. Suppose that
L& is closed in &. Then the mapping L: &’ — &’ has a closed range. Therefore we
can find a distribution u with compact support satisfying Lu = g. Applying once
more [6, Lemma 2.6}, we receive Ly = g for the function ¢ € & given by the
previous formula. It follows that L(¢ — u) = 0, therefore the distribution ¢ — u is
invariant. We determine r > 2 such that the support of u is contained in {|x,| < r,
i=1,2,3}. Now let ¢ <1/2r and select a test function ¥ > 0 satisfying
W¥(e,0,-1/2¢) > 0 such that the support of ¥ is contained in a §-neighbourhood
of (&0,-1/2¢), where 8 is a sufficiently small positive number, 8§ < ¢/2. For ¢ >
2(r + 1)/e the support of ¥ o ' is contained in {x, > ¢/2, x, > r}, therefore we
have

(u,¥) = (u,¥oe ¥y =0 and (@, ¥oe*)=0
but (¢, ¥) # 0. Using the invariance of ¢ — u we get the following contradiction:
0#(p,¥)=(p—u,¥)=(p—u,¥oe*)=0.
3. Proofs. Let X be an arbitrary nilpotent (n X n)-matrix, X # 0. After change of
basis we may assume that X has the form
0

wheree, € {0,1},j=2,...,n — 1.

LEMMA 1. Let ¢ € &. Assume that x,¢ is annihilated by all T € M . (We write
X9 € M%) Then T'*)(@) = 0 whenever v, # 0 (v, = the first component of v).

oW

PrOOF. By [6, §2.4], we have the formula x,T\*) = kv, T,* ™D + w T,/0), k > 0.

vw??

Therefore kv, T,* V(@) + w,T¥)(@) = 0. For w, = 0 the assertion follows im-

v.w

mediately. For w, # 0 we conclude 79 (¢)=0 from 0= (T ), x,p) =
w (T2, ¢) and proceed by induction on k.

v,w

v,w
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LEMMA 2. Letp € . If x,¢ € M then ¢ € M.

PROOF. By Lemma 1, we have only to prove that 7,'¥)(¢) = 0 whenever v, = 0.
Now, by Lemma 1,

0= U(v) w(¢) —f Vu‘ l((P°elX)(W) dt

where v = v + (1/9,0,...,0), » € N. Using the formula
K

1 9™ _
e £ (5 5 o

m=0 ax{"
we conclude
k
— k i_ a_m k—m o p!X
0 mg’o(m)v'" [ g v (@e e (n) a.

For v — oo we get

0= [ vi(pee™)(w)dt = T9(g).

LEMMA 3. Let the rank of X be equal to 1. Let ¢ € &. Suppose that ¢ € (M $)*
and o(x) = 0 whenever x;, = 0. Thenp € LS.

PRrROOF. Compare to [6, Lemma 2.5]. We get ¢ = x,x where x € (# $)* . There-
fore [g x(x) dx, = 0. Thus there is a function y € ¥such that x = 9¢,/9dx,. We get
@ = x,09/3x, = —Ly.

LEMMA 4. Let the rank of X be equal to 2 and let L' be the infinitesimal
transformation on R* ! Z {x € R"|x, = 0} associated with the matrix

0.

&

"

n—-1
Then for every ¢ € (M $)* the restriction ¢’ to R"~! belongs to L'’ (R"™1).

PROOF. Obviously it is sufficient to consider the two cases ¢, = 8, j and ¢; = 83.1.,
Jj=2,....n—1.

Let ¢, = 8, ;. By Lemma 3, we have only to prove that ¢'(x,, x3,...,x,) =0
whenever x, = 0. By assumption, for all » € N,

0= /( ( 0x3,..,x,,))dt=,,/q,(;13’%

For v — oo we get [ 9(0,0,1%/2 + x,,...,x,) dt = 0 for all x;,...,x,. It is proved
in [6, Lemma 2.6] that from this it follows that ¢(0,0, x;,...,x,) =0 for all
XqpeunsX

+ X5, X4,...,X, | dt.

ne
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Let ¢, = §; ;. By Lemma 3, we have only to prove that ¢'(x,, x3,...,x,) =0

whenever x; = 0. By assumption, for all » € N and for every nonzero vector
z = (z,, z,) € R? we have

4 V4
f‘p(exx(jl, X3 2, x4,...,x,,)) dt

z z
v/ qa(—vl-,x2 + 1z, —f,x“ + tzz,...,x,,) dt.

0

For v — oo we get [ @(0, x, + 12,,0, x, + tz,,...,x,) dt = 0 for all x,, x,,...,x,.
This means that the one-dimensional Radon transform of the function (x,, x,) —
¢(0, x,,0, x,,...,x,) is identically 0 for all xs,...,x,. Now the assertion follows.
(See [7, Chapter I, §6].)

PrROOF OF THE THEOREM. For rank(X) = 1 the Theorem is just Lemma 3. For
rank(X) > 1 we prove #5 = L% by induction on rank(X). For rank(X) = 2 the
assertion follows from Lemma A, using Lemmas 2 and 4. For rank(X) > 2 the
assertion follows from Lemma A, using Lemma 2 and the induction hypothesis.

PROOF OF THE COROLLARY. By the Theorem, we only have to prove that L: ¥ — &
is injective. Now, if Lp = 0 for ¢ € %, then ¢ must be invariant because of
Fy = (LSF)*; i.e. g is constant on the orbits. In view of the fact that “almost all”
orbits are unbounded this is not possible except for ¢ = 0.
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