SOLVABILITY OF DIFFERENTIAL EQUATIONS WITH LINEAR COEFFICIENTS OF NILPOTENT TYPE

RAINER FELIX

ABSTRACT. Let L be the vector field on \mathbf{R}^n associated with a real nilpotent $(n \times n)$ -matrix. It is shown that L regarded as a differential operator defines a surjective mapping of the space \mathscr{S}' of tempered distributions onto itself; i.e. $L\mathscr{S}'(\mathbf{R}^n) = \mathscr{S}'(\mathbf{R}^n)$. Replacing \mathscr{S}' by the space \mathscr{D}' of ordinary distributions, this is not true in general.

1. Introduction. Let L be the infinitesimal transformation on \mathbb{R}^n associated with a real $(n \times n)$ -matrix X; i.e. L is given by

$$L\varphi(x) = \frac{d}{dt}\varphi(e^{-tX}x)\big|_{t=0} = -\sum_{i=1}^{n} (Xx)_{i} \frac{\partial \varphi}{\partial x_{i}}(x),$$

 $\varphi \in C^{\infty}(\mathbb{R}^n)$, $x \in \mathbb{R}^n$, $(Xx)_i$ the *i*th component of Xx. Let us regard L as a linear mapping of \mathscr{D} into itself, where \mathscr{D} is the space of all C^{∞} -functions with compact support on \mathbb{R}^n . Furthermore, we also regard L as a linear mapping of \mathscr{D}' into itself defined in the usual way by continuous extension, where \mathscr{D}' is the dual space of \mathscr{D} , which is the space of (ordinary) distributions. The distributions annihilating the image $L\mathscr{D}$ of L are just the distributions invariant under e^{tX} , $t \in \mathbb{R}$. We write $\mathscr{D}'_X = (L\mathscr{D})^{\perp}$.

We ask the following questions closed related with each other:

- (i) Is $L\mathcal{D}$ closed in \mathcal{D} ?
- (ii) How do we characterize the invariant distributions? Is there a canonical fundamental set?
- (iii) Is the differential operator L solvable in some sense? That means: When has the equation Lu = f a solution u?

Essentially this is a special case of the problem investigated in [9]. Nevertheless, it seems to be very difficult to answer these questions in general. (See the examples below.)

In [9], questions (i) and (ii) are studied in a more general framework: Let M be a differentiable manifold and \mathcal{L} a Lie algebra of infinitesimal transformations on X. Then the set $\text{Div}(\mathcal{L})$ of all finite sums $\sum L_i \varphi_i$, where $L_i \in \mathcal{L}$ and $\varphi_i \in \mathcal{D}(M)$, is characterized in some special situations. Particularly, if at each point of M the vector

Received by the editors December 8, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 58G99, 35A05, 35D05.

Key words and phrases. Divergences, invariant distributions, differential operators with critical points.

162 RAINER FELIX

fields in \mathcal{L} give an *m*-dimensional subspace of the tangent space to M, it is claimed in [9, Theorem 2], that (under some additional assumptions)

- (a) $Div(\mathcal{L})$ is closed;
- (b) $g \in \mathcal{D}(M)$ belongs to $Div(\mathcal{L})$ iff g is annihilated by the invariant measures on the integral manifolds.

In [5, §4], a counterexample to (b) is given. (See also [1, §2.1] for new versions of [9, Theorem 2]; see [2-4].) In Example 2 we shall see that (a) is false, too.

Coming back to our special situation, we deal with the case that X is a nilpotent matrix. In view of Example 2 we are suggested to work with \mathcal{S} and \mathcal{S}' rather than with \mathcal{D} and \mathcal{D}' , where \mathcal{S} is the Schwartz space of rapidly decreasing smooth functions and \mathcal{S}' its dual space, which is the space of tempered distributions. Working with \mathcal{S} and \mathcal{S}' we get satisfactory answers to our questions.

Let us state the results: We call a pair (v, w) of vectors in \mathbb{R}^n X-admissible if $v \neq 0$ and $Xw \neq 0$. For X-admissible pairs (v, w) and for integer $k \geq 0$ we define the tempered invariant distribution

$$T_{v,w}^{(k)}(\varphi) := \int_{\mathbf{R}} \nabla_v^k (\varphi \circ e^{tX})(w) dt, \qquad \varphi \in \mathscr{S},$$

where ∇_v denotes the directional derivative. We write \mathcal{M}_X (resp. \mathcal{M}_X^0) for the set of all $T_{v,w}^{(k)}$ (resp. $T_{v,w}^{(0)}$). Clearly, the elements of \mathcal{M}_X^0 are just the invariant measures on the nontrivial $e^{\mathbf{R}X}$ -orbits in \mathbf{R}^n .

THEOREM. Let X be an arbitrary nonzero real nilpotent $(n \times n)$ -matrix and let L be the infinitesimal transformation associated with X.

Then $L\mathcal{S}$ is closed in \mathcal{S} . Moreover the invariant tempered distributions can be characterized as follows:

For $\operatorname{rank}(X) = 1$ the invariant orbital measures form a fundamental set. For $\operatorname{rank}(X) > 1$ the set \mathcal{M}_X is fundamental. (Note that in general the invariant orbital measures do not form a fundamental set according to [5, §1].)

COROLLARY. The differential operator L regarded as a mapping of \mathcal{S}' into itself is surjective.

To prove the theorem, Lemma 2.2 of [6] is crucially used. For the convenience of the reader it is cited here:

LEMMA A. Suppose that $\mathbf{R}^{n-1} \triangleq \{x \in \mathbf{R}^n | x_1 = 0\}$ is X-invariant and contains the kernel of X. Let L' be the infinitesimal transformation on \mathbf{R}^{n-1} associated with the restriction of X to \mathbf{R}^{n-1} . Let $\mathcal{M} \subseteq \mathcal{S}_X'(\mathbf{R}^n)$ be a set of invariant tempered distributions containing the invariant measures on the orbits in $\{x_1 \neq 0\}$ and satisfying the following conditions:

- (i) if $\varphi \in \mathcal{S}(\mathbf{R}^n)$ and $x_1 \varphi \in \mathcal{M}^{\perp}$, then $\varphi \in \mathcal{M}^{\perp}$;
- (ii) if $\varphi \in \mathcal{M}^{\perp}$, then the restriction of φ to \mathbb{R}^{n-1} belongs to $L'\mathcal{S}(\mathbb{R}^{n-1})$. Then $\mathcal{M}^{\perp} = L\mathcal{S}(\mathbb{R}^n)$.
- **2. Examples.** To explain the area of validity of the assertions in the theorem we give two examples. Example 1 shows that the assertions do not need to be valid if X is not nilpotent. In Example 2 we see that \mathcal{S} cannot be replaced by \mathcal{D} or \mathcal{E} .

EXAMPLE 1. (Compare to Example 1 of [9].) Let α , β be real numbers with α/β irrational and let

$$X = \begin{pmatrix} 0 & -\alpha & 0 & 0 \\ \alpha & 0 & 0 & 0 \\ 0 & 0 & 0 & -\beta \\ 0 & 0 & \beta & 0 \end{pmatrix}.$$

Then the one-parameter-subgroup e^{tX} , $t \in \mathbb{R}$, in SO(4) is not closed. By [8, Chapter IV, Theorem D], it is easily seen that the closure $\overline{L\mathscr{D}}$ of $L\mathscr{D}$ in \mathscr{D} is just the set of all test functions g for which $\int_H g(bx) db = 0$ for all $x \in \mathbb{R}^4$, where H is the closure of $e^{\mathbb{R}^X}$ in SO(4). Using a rotation invariant partition of unity we conclude that the closure $\overline{L\mathscr{D}}$ of $L\mathscr{D}$ in \mathscr{D} is also the set of all $g \in \mathscr{D}$ for which $\int_H g(bx) db = 0$.

For $x \in \mathbf{R}^4$ we write x = (y, z) where $y, z \in \mathbf{R}^2$. By polar decomposition we have $y = r \cdot e(\sigma)$ where $e(\sigma) := (\cos \sigma, \sin \sigma)$; similarly $z = s \cdot e(\tau)$. Let γ be a test function on $]0, \infty[$ with $\gamma(1) = 1$. If h(y, z) is a C^{∞} -function on $\{x \in \mathbf{R}^4 | |y| = |z| = 1\}$ for which $\int_0^{2\pi} \int_0^{2\pi} h(e(\sigma), e(\tau)) d\sigma d\tau = 0$, then the function $g(x) := \gamma(r)\gamma(s)h(e(\sigma), e(\tau))$ belongs to \mathscr{D} and satisfies the condition $\int_H g(bx) db = 0$ for all $x \in \mathbf{R}^4$. Assuming $g \in L\mathscr{D}$ or $g \in L\mathscr{S}$, say $g = L\varphi$, we receive

$$h(e(\sigma), e(\tau)) = \alpha \frac{\partial}{\partial \sigma} \Psi(e(\sigma), e(\tau)) + \beta \frac{\partial}{\partial \tau} \Psi(e(\sigma), e(\tau))$$

for the C^{∞} -function $\Psi(y, z) := -\varphi(y, z)$ on $\{|y| = |z| = 1\}$. But this is not possible for every h, when α/β is a Liouville number [9, Example 1]. Thus neither $L\mathcal{D}$ nor $L\mathcal{S}$ is closed in \mathcal{D} and \mathcal{S} , respectively, whenever α/β is a Liouville number.

Example 2. Let

$$X = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

It is shown in [5] that there are invariant tempered distributions on \mathbb{R}^3 , which cannot be approximated by linear combinations of invariant orbital measures. More precisely, let α , β , $\gamma \in \mathcal{D}(\mathbb{R})$ such that $\alpha(0) = 0$ and $\beta(-t) = -\beta(t)$ for $t \in \mathbb{R}$ and put $g(x) := \alpha(x_1)\beta(x_2)\gamma(x_3) \in \mathcal{D}(\mathbb{R}^3)$. Then g is annihilated by all invariant orbital measures, but if k > 0 we have $T_{v,w}^{(k)}(g) \neq 0$ for $\alpha = x_1^k \eta$, $\eta \in \mathcal{D}(\mathbb{R})$, such that $\eta(0) \neq 0$, and for suitable functions β , γ , where v = (1,0,0) and w = (0,1,0). Therefore, assertion (b) of Theorem 2 in [9] (see introduction) cannot be valid. However, at this point it is not yet clear if $L\mathcal{D}$ is closed or not.

To answer this question we select α, β, γ such that $\beta \ge 0$ on $]0, \infty[$, $\beta(1) > 0$, $\gamma \ge 0$, $\gamma(0) > 0$, $\alpha > 0$ on the open interval]0, 1[and $\alpha = 0$ outside of]0, 1[. Now we find a sequence (α_{ν}) converging to α in $\mathcal{D}(\mathbf{R})$ with $\alpha_{\nu} = 0$ outside of $]\epsilon_{\nu}, 1[$, $\epsilon_{\nu} > 0$. Then the sequence $g_{\nu}(x) := \alpha_{\nu}(x_1)\beta(x_2)\gamma(x_3)$ converges to $g(x) := \alpha(x_1)\beta(x_2)\gamma(x_3)$ in $\mathcal{D}(\mathbf{R}^3)$. At first we show that $g_{\nu} \in L\mathcal{D}$ for all ν . By $[\mathbf{6}$, Lemma 2.6], g_{ν} belongs to $L\mathcal{S}$. The function $\varphi_{\nu} \in \mathcal{S}$ for which $g_{\nu} = L\varphi_{\nu}$ is obtained by the formula

$$\varphi_{\nu}(x) = \int_0^\infty g_{\nu}\left(x_1, tx_1 + x_2, \frac{t^2}{2}x_1 + tx_2 + x_3\right) dt.$$

(See [6, §2.1].) Using this formula, the fact that φ_{ν} has compact support is verified by a routine calculation keeping in mind that $g_{\nu}(x) = 0$ for $x_1 < \varepsilon_{\nu}$. From $g_{\nu} \in L\mathscr{D}$ we receive $g \in L\mathscr{D}$. Assuming $g \in L\mathscr{D}$, say $g = L\varphi$, our formula implies

$$\varphi\left(\varepsilon,0,-\frac{1}{2\varepsilon}\right)=\alpha(\varepsilon)\int_0^\infty\beta(t\varepsilon)\gamma\left(\frac{t^2}{2}\varepsilon-\frac{1}{2\varepsilon}\right)dt>0$$

for all $0 < \varepsilon < 1$ because the integrand is ≥ 0 and > 0 for $t = 1/\varepsilon$. But this is not possible, since φ has compact support. Thus $L\mathscr{D}$ is not closed in \mathscr{D} .

Choosing β in such a way that $\beta = 0$ on a neighbourhood of 0 we get a counterexample to assertion (a) of Theorem 2 in [9] (see introduction).

Moreover, it follows by functional analysis that the equation Lu = f does not have a solution $u \in \mathcal{D}'$ for every $f \in \mathcal{D}'$.

Furthermore, we can conclude that $L\mathscr{E}$ is not closed in \mathscr{E} , where \mathscr{E} is the space of all infinitely differentiable functions provided with the usual topology. Suppose that $L\mathscr{E}$ is closed in \mathscr{E} . Then the mapping $L\colon \mathscr{E}'\to \mathscr{E}'$ has a closed range. Therefore we can find a distribution u with compact support satisfying Lu=g. Applying once more [6, Lemma 2.6], we receive $L\varphi=g$ for the function $\varphi\in\mathscr{S}$ given by the previous formula. It follows that $L(\varphi-u)=0$, therefore the distribution $\varphi-u$ is invariant. We determine $r\geqslant 2$ such that the support of u is contained in $\{|x_i|\leqslant r,i=1,2,3\}$. Now let $\varepsilon<1/2r$ and select a test function $\Psi\geqslant 0$ satisfying $\Psi(\varepsilon,0,-1/2\varepsilon)>0$ such that the support of Ψ is contained in a δ -neighbourhood of $(\varepsilon,0,-1/2\varepsilon)$, where δ is a sufficiently small positive number, $\delta<\varepsilon/2$. For $t>2(r+1)/\varepsilon$ the support of $\Psi\circ e^{-tX}$ is contained in $\{x_1>\varepsilon/2,x_2>r\}$, therefore we have

$$\langle u, \Psi \rangle = \langle u, \Psi \circ e^{-tX} \rangle = 0$$
 and $\langle \varphi, \Psi \circ e^{-tX} \rangle = 0$

but $\langle \varphi, \Psi \rangle \neq 0$. Using the invariance of $\varphi - u$ we get the following contradiction:

$$0\neq \left\langle \varphi,\Psi\right\rangle =\left\langle \varphi-u,\Psi\right\rangle =\left\langle \varphi-u,\Psi\circ e^{-tX}\right\rangle =0.$$

3. Proofs. Let X be an arbitrary nilpotent $(n \times n)$ -matrix, $X \neq 0$. After change of basis we may assume that X has the form

where $\varepsilon_i \in \{0, 1\}, j = 2, ..., n - 1$.

LEMMA 1. Let $\varphi \in \mathcal{S}$. Assume that $x_1 \varphi$ is annihilated by all $T \in \mathcal{M}_X$. (We write $x_1 \varphi \in \mathcal{M}_X^{\perp}$.) Then $T_{v,w}^{(k)}(\varphi) = 0$ whenever $v_1 \neq 0$ ($v_1 = the$ first component of v).

PROOF. By [6, §2.4], we have the formula $x_1T_{v,w}^{(k)}=kv_1T_{v,w}^{(k-1)}+w_1T_{v,w}^{(k)},\ k>0$. Therefore $kv_1T_{v,w}^{(k-1)}(\varphi)+w_1T_{v,w}^{(k)}(\varphi)=0$. For $w_1=0$ the assertion follows immediately. For $w_1\neq 0$ we conclude $T_{v,w}^{(\circ)}(\varphi)=0$ from $0=\langle T_{v,w}^{(\circ)},x_1\varphi\rangle=w_1\langle T_{v,w}^{(\circ)},\varphi\rangle$ and proceed by induction on k.

LEMMA 2. Let $\varphi \in \mathcal{S}$. If $x_1 \varphi \in \mathcal{M}_X^{\perp}$ then $\varphi \in \mathcal{M}_X^{\perp}$.

PROOF. By Lemma 1, we have only to prove that $T_{v,w}^{(k)}(\varphi) = 0$ whenever $v_1 = 0$. Now, by Lemma 1,

$$0 = T_{v^{(k)},w}^{(k)}(\varphi) = \int \nabla_{v^{(k)}}^{k}(\varphi \circ e^{tX})(w) dt$$

where $v^{(\nu)} = v + (1/\nu, 0, \dots, 0), \nu \in \mathbb{N}$. Using the formula

$$\nabla_{v^{(\nu)}}^{k} = \sum_{m=0}^{k} {k \choose m} \frac{1}{\nu^m} \frac{\partial^m}{\partial x_1^m} \nabla_v^{k-m}$$

we conclude

$$0 = \sum_{v=0}^{k} {k \choose m} \frac{1}{v^m} \int \frac{\partial^m}{\partial x_1^m} \nabla_v^{k-m} (\varphi \circ e^{tX})(w) dt.$$

For $\nu \to \infty$ we get

$$0 = \int \nabla_v^k (\varphi \circ e^{tX})(w) dt = T_{v,w}^{(k)}(\varphi).$$

LEMMA 3. Let the rank of X be equal to 1. Let $\varphi \in \mathcal{S}$. Suppose that $\varphi \in (\mathcal{M}_X^{\circ})^{\perp}$ and $\varphi(x) = 0$ whenever $x_1 = 0$. Then $\varphi \in L\mathcal{S}$.

PROOF. Compare to [6, Lemma 2.5]. We get $\varphi = x_1 \chi$ where $\chi \in (\mathcal{M}_{\chi}^{\circ})^{\perp}$. Therefore $\int_{\mathbf{R}} \chi(x) dx_2 = 0$. Thus there is a function $\psi \in \mathcal{S}$ such that $\chi = \partial \psi / \partial x_2$. We get $\varphi = x_1 \partial \psi / \partial x_2 = -L\psi$.

LEMMA 4. Let the rank of X be equal to 2 and let L' be the infinitesimal transformation on $\mathbb{R}^{n-1} \stackrel{\wedge}{=} \{x \in \mathbb{R}^n | x_1 = 0\}$ associated with the matrix

Then for every $\varphi \in (\mathcal{M}_X^{\circ})^{\perp}$ the restriction φ' to \mathbb{R}^{n-1} belongs to $L'\mathcal{S}(\mathbb{R}^{n-1})$.

PROOF. Obviously it is sufficient to consider the two cases $\varepsilon_j = \delta_{2,j}$ and $\varepsilon_j = \delta_{3,j}$, j = 2, ..., n - 1.

Let $\varepsilon_j = \delta_{2,j}$. By Lemma 3, we have only to prove that $\varphi'(x_2, x_3, \dots, x_n) = 0$ whenever $x_2 = 0$. By assumption, for all $\nu \in \mathbb{N}$,

$$0 = \int \varphi \left(e^{tX} \left(\frac{1}{\nu^2}, 0, x_3, \dots, x_n \right) \right) dt = \nu \int \varphi \left(\frac{1}{\nu^2}, \frac{t}{\nu}, \frac{t^2}{2} + x_3, x_4, \dots, x_n \right) dt.$$

For $\nu \to \infty$ we get $\int \varphi(0,0,t^2/2+x_3,\ldots,x_n) dt=0$ for all x_3,\ldots,x_n . It is proved in [6, Lemma 2.6] that from this it follows that $\varphi(0,0,x_3,\ldots,x_n)=0$ for all x_3,\ldots,x_n .

166 RAINER FELIX

Let $\varepsilon_i = \delta_{3,j}$. By Lemma 3, we have only to prove that $\varphi'(x_2, x_3, \dots, x_n) = 0$ whenever $x_3 = 0$. By assumption, for all $\nu \in \mathbb{N}$ and for every nonzero vector $z = (z_1, z_2) \in \mathbb{R}^2$ we have

$$0 = \int \varphi \left(e^{tX} \left(\frac{z_1}{\nu}, x_2, \frac{z_2}{\nu}, x_4, \dots, x_n \right) \right) dt$$

= $\nu \int \varphi \left(\frac{z_1}{\nu}, x_2 + tz_1, \frac{z_2}{\nu}, x_4 + tz_2, \dots, x_n \right) dt.$

For $\nu \to \infty$ we get $\int \varphi(0, x_2 + tz_2, 0, x_4 + tz_2, ..., x_n) dt = 0$ for all $x_2, x_4, ..., x_n$. This means that the one-dimensional Radon transform of the function $(x_2, x_4) \rightarrow$ $\varphi(0, x_2, 0, x_4, \dots, x_n)$ is identically 0 for all x_5, \dots, x_n . Now the assertion follows. (See [7, Chapter I, §6].)

PROOF OF THE THEOREM. For rank(X) = 1 the Theorem is just Lemma 3. For $\operatorname{rank}(X) > 1$ we prove $\mathcal{M}_X^{\perp} = L\mathcal{S}$ by induction on $\operatorname{rank}(X)$. For $\operatorname{rank}(X) = 2$ the assertion follows from Lemma A, using Lemmas 2 and 4. For rank(X) > 2 the assertion follows from Lemma A, using Lemma 2 and the induction hypothesis.

PROOF OF THE COROLLARY. By the Theorem, we only have to prove that $L: \mathcal{S} \to \mathcal{S}$ is injective. Now, if $L\varphi = 0$ for $\varphi \in \mathcal{S}$, then φ must be invariant because of $\mathscr{S}'_X = (L\mathscr{S})^{\perp}$; i.e. φ is constant on the orbits. In view of the fact that "almost all" orbits are unbounded this is not possible except for $\varphi = 0$.

REFERENCES

- 1. R. Barrà, Divergences et distributions invariantes, Thèse de 3e cycle, nº 723, Université de Poitiers,
 - 2. _____, Fonctions divergences et distributions invariantes, Bull. Sci. Math. (2) 105 (1981), 49-71.
 - 3. ______, Fonctions divergences et distributions invariantes. II, Bull. Sci. Math. (2) 107 (1983), 209-217. 4. _____, Distributions invariantes. III, Preprint.
- 5. J. Dixmier, Sur les distributions invariantes par un groupe nilpotent, C. R. Acad. Sci. Paris Ser. A 285 (1977), 7-10.
 - 6. R. Felix, Das Syntheseproblem für invariante Distributionen, Invent. Math. 65 (1981), 85-96.
 - 7. S. Helgason, The Radon transform, Progress Math. 5, Birkhäuser, Boston-Basel-Stuttgart, 1980.
 - 8. C. S. Herz, Analyse harmonique à plusieurs variables, Publ. Math. Orsay, 1965.
 - 9. _____, Functions which are divergences, Amer. J. Math. 92 (1970), 641-656.

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT BIELEFELD, UNIVERSITÄTSSTRASSE, D-4800 BIELEFELD, WEST GERMANY