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ON PROPERLY EMBEDDING PLANES

IN ARBITRARY 3-MANIFOLDS

E. M. BROWN AND C. D. FEUSTEL

Abstract. We prove an analog of the loop theorem for an arbitrary noncompact

3-manifold. In particular, we show that the existence of a " nontrivial" proper map

of a plane into a 3-manifold implies the existence of a nearby nontrivial embedding

of a plane into the 3-manifold.

Introduction. In [2] we showed that if M is an eventually end-irreducible 3-mani-

fold and /: R2 -» M is a proper essential map, then there is a proper essential

embedding g: R2 -» M. In this paper we remove the restriction to manifolds which

are eventually end-irreducible. This permits us to choose the image of g to lie in a

preassigned neighborhood of the image off. This could not be done with the weaker

theorem, for even when M is eventually end-irreducible, a regular neighborhood of

/(R2) need not be. We also extend the theorem in another direction; roughly, we

show that if a normal subgroup of the fundamental group of the complement of a

compact set in M is given and large loops around the origin in R2 are mapped by / to

homotopy classes not in the subgroup, then g can be chosen to have the same

property.

The proof of the main theorem, (2.2), parallels that of [2]. At one point, [2] makes

major use of the eventually end-irreducible hypothesis. In this paper we prove

Lemma (2.1) to substitute where eventually end-irreducible was used before. We

believe the technique used in Lemma (2.1) is new. We expect it to be generally

applicable to 3-manifolds which are not eventually end-irreducible.

1. Notational conventions and a preliminary lemma. We work in the category of

simplicial complexes and piecewise linear maps. A map/: X -» Y is proper if f'l(C)

is compact for every compact C c Y. If X c y we use Fr( X) to mean the frontier of

A' in y and Cl( X) to mean the closure of X in Y. If M is a manifold, we use aM for

the boundary of M. We follow Waldhausen's convention [6] on regular neighbor-

hoods; specifically, if X c Y, choose a triangulation of Y in which all previously

mentioned subspaces are subcomplexes, and let U(X) be the simplicial neighbor-

hood of X in the second barycentric subdivision.

If M is a 3-manifold, an exhausting sequence for M will be a sequence { M„} of

compact 3-manifolds in M with Mn c Mn + X — Fr(M„ + 1), Mn O a M a 2-manifold,
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and U„M„ = M. The word "proper" is used in two senses; here, where applicable,

we mean both. In particular, a 2-manifold F is properly embedded in a 3-manifold

M if the inclusion map F -> M is proper and F O aM = oF. If F is a 2-manifold

properly embedded in a 3-manifold M, Jaco denotes the result of cutting M over F,

i.e. C1(M - (7(F)), aF(M). We use a(F, M) for this to avoid double subscripts. If

M, N (M c N) are 3-manifolds and F c N is a 2-manifold with F O Fr(M) = 3F,

we also write a(F, M) for M U (7(F) (we still refer to this as cutting M over F). We

also write a( F, M), where F is a finite family of 2-manifolds and we are cutting over

them in sequence. When the order in which we cut matters, we give F as an ordered

family.

We shall write our fundamental groups without basepoint, as our use of funda-

mental groups will be independent of the choice of basepoint. If /: A -* M is a map

of a 1-sphere into M, we use [/] for the homotopy class in itx(M) of/with some

choice of basepoint and some orientation of Sl. Notice that if G is a normal

subgroup of ttx(M) then [/] <£ G makes sense. An unlabeled map between funda-

mental groups will always be induced by inclusion.

We use the loop theorem [5] without further reference.

Lemma (1.1) Let M be a 3-manifold and let M0 be a compact submanifold. There is

an exhausting sequence { Mm} for M, with M0 c Mm, and for each m there is a finite

family 33m of disks properly embedded in Mm — M0 — aM so that Fr(a(33m , Mm)) is

incompressible in M — M0.

We do not assert that {a(33m , Mm)} exhausts M; that is, generally, impossible.

The point is that all the members of 33m are contained in Mm.

Proof. Let {M'm} be an exhausting sequence for M. Suppose, by induction, that

for all 1 < m < n we have chosen Mm and 33m as above and, in addition, M'm c Mm

(this last is so that the sequence we end up with exhausts M). If M„ is any compact

manifold with M„_,U M'n c Mn - Fr(Af„), it is a standard argument that one can

construct a finite sequence of disks 33n =(Dx,...,Dk) in M - M0 so that

Fr(a(^„, Mn)) is incompressible in M — M0. We may not, however, be able to

choose all the disks in M„. We show that if M„ is chosen appropriately, this can be

done; choose Mn and 33n so that 33n has the least number of disks possible not

contained in Mn. Let 7), be the first in the sequence so that £>,. is not contained in M„.

We may assume that Dx,...,Di_x are disjoint and for y < z that 7), meets (7(7),) in

disks parallel to D-, i.e. in disks whose boundaries are essential in the annulus

U(Dj) O Fr(Af„). Let A/„" = M„ U (7(7),). Then a((Dx,. ..,D,), M„) can be con-

structed from M" by cuts parallel to the disks Dx,... ,Di_x. It follows that all of

Dx,...,Dk are contained in Mn and the lemma is proved.

If D is a properly embedded disk in a 3-manifold M there is a homeomorphism of

U(D) onto D X [-1,1] carrying U(D) O oM onto 37) X [-1,1]. We identify via

such a homeomorphism and use (7(7)) and D X [-1,1] interchangeably. In Lemma

(1.1) we may assume the disks chosen so that if D g 33m and E g 33n , m < n, then

(7(F) n Mm c UÇJ&m) and (7(F) O (7(7)) = D X F, where F C (-1,1) is a finite

set of closed intervals. We may further assume that if p g F O (7(7)), then the
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product line { p} X [-1,1] of (7(F) is contained in the product line { p} X [-1,1] of

U(D). We make these assumptions when we use Lemma (1.1).

2. The main lemma and the theorem. If C is a compact subset of M, by a

complementary domain of C we mean the closure of a component of M — C.

Lemma (2.1). Let M be a 3-manifold and let f: R2 -» M be a proper map. Let

C c M be compact, let A be a complementary domain of C, and let G be a normal

subgroup of ttx(A). Suppose D0 c R2 is a disk, f(R2 — 7)0) c A, and [/|37)0] G G.

Then there exists an exhausting sequence { M'm} for M, an exhausting sequence { 7)„,}

of disks in R2, and a proper map g: R2 -» M so that g(R2 — D0) c A, [g|37)0] G G,

and Dm is a component of g'x(M'm).

Proof. We may assume that/(R2) O aM is empty. It is sufficient to prove that if

LcMis any compact submanifold containing C then there exists a proper map

g: R2 -> M and a compact submanifold N of M containing L so that fl(L) =

g~l(L), /|/"'(L) = g|/_1(L), g"'(F) is contained in a component of g~x(N), and

that component is a disk.

Suppose L is given; choose a compact submanifold M0 of M so that:

(1)/_1(F) is contained in a single component of f~1(M0).

Subject to the restrictions on g above, assume/has been altered so that f~l(M0)

has the least number of components possible. Now choose {Mm} and {33m } as in

Lemma (1.1). Altering / outside f~l(M0) by a proper homotopy and choosing a

subsequence of ( Mm}, we may further assume:

(2)/is in general position with respect to Mm and 33m for all m.

(3)/(R2) n (D X [-1,1]) = (f(R2) OD)X [-1,1} for all D<=®„.

(4)f~1(Mm) is contained in a disk inf~1(Mm + x) for m = 0,1,_

Let Nm = a(33m , Mm). Let A0 = B0 denote the component of f~1(M0) which

contains f~l(L). Let Am (respectively, Bm) denote the component of f~l(Mm)

(respectively,/"^^,)) which contains Am_x (respectively, Bm_x). It follows from (2)

and (3) that Am and Bm are disks-with-holes, and from (4) that/_1( A7m-i) c Am, for

zzz = 1,2,_A component of dAm (respectively, aBm) is called an inner boundary

component if the disk it bounds in R2 does not contain Am (respectively, Bm).

We show that / can be altered so that all inner boundary components of some F„

disappear. Then F„ is a disk and contains /"l( L), so N = NH will prove the lemma.

Let À be an inner boundary component of Bm. If /(A) is an inessential loop in

Fr(A/m), then we can alter /to carry a small neighborhood of the disk bounded by A

into a collar neighborhood of ¥r(Nm) (which eliminates X from the list of inner

boundary components of Bm). This will certainly be the case if the disk bounded by

À contains no component of f'1(M0). We show that this last is true for m

sufficiently large; indeed, choose zz so that F„ contains as many components of

f~l(M0) as possible.

By (2) and (3), the inner boundary components of F„ are of three kinds:

(5) components which are also inner boundary components of An,

(6) components which miss dAn,
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(7) components made up of arcs which / maps properly into U 33n X{-1,1}

alternating with arcs of aAn.

Let À be an inner boundary component of Bn. We show that the disk E bounded

by A contains no points of/_1(M0). Since/-1(.Mo) is contained in An, this is obvious

if A is of type (5). If A is of type (6) then /(A) c D X {-1,1} for some D g 33n:

since f~l(M0) has the least number of components possible, it again follows that E

misses f~l(M0). Suppose A is of type (7) and F contains a component Kof f~1(M0).

By our choice of n, K <t Bn + X, and since Bn c F„ + 1, there is an inner boundary

component p of F„+1 with K contained in the disk bounded by p. Again, since

Bn c Bn + X, p c F. By (4), An is contained in a disk in An+X; since /(p) c f(E) c

int( M„ + ! ), p is of type (6). We have seen that no such curve of type (6) exists, and

the lemma is proved.

If/: R2 -> M is a proper map, then for any compact C C M there is a comple-

mentary domain A of C and a disk C c R2 so that /(R2 - D) c A. If, for some

choice of C, [/| 37)] is not trivial in trx(A), then/is an essential map. The following

theorem will show, in particular, that a proper essential map may be replaced by a

proper essential embedding.

Theorem (2.2). Let M be a 3-manifold and let f:R2 -» M be a proper map. Suppose,

for some compact C c M, that if D c R2 is the disk and A the complementary domain

of C with f(R2 — D) c A, then [f\oD] £ G for G a normal subgroup of ttx(A). Then

for any neighborhood U of f(R2) there is a proper embedding g: R2 -> M and a disk

Ec R2 so that g(R2) c U, g(R2 - E) c A, and[g\dE] G G.

Proof. Choose a triangulation of M so that U(f(R2)) c U. We may replace M by

(7(/(R2)), C by C n U(f(R2)), A by the complementary domain/!' of C O U(f(R2))

in (7(/(R2)) which contains/(R2 - D), and G by il\G), where i: Ü' -* /Í is the

inclusion map. Thus, it is sufficient to prove the theorem without the condition

g(R2) c U.

Returning to the original notation we use Lemma (2.1) to find an exhausting

sequence {A/,} for M and a nested sequence of disks (7),} in R2 so that C c Mx,

D c Dx, and 7), is a component of f~l(Mi). We assume that/is in general position

with respect to 3M, for every i. Since D c £>,, it follows that/(37),) c A for every z.

As in [2] we may use Stallings' proof of the loop theorem [5] to choose a sequence of

embedded disks {Ek} in M - 3 A/, and a sequence of simple loops {Ay} in A so

that:

(1) UA>,7r0(Fr(M,) O Ek) is a finite set (tt0(X) is the set of path components of

X).

(2)[Xl]^Gcz^(A).

(3) If k >y then Ay is a component of Fr(A/-) n £4, and the disk in Ek bounded

by Ay contains Ay_!.

For each y < k we let A(j, k ) be the annulus in Ek bounded by A; and \J+X. Then

for z <j we set/(z, j) = {k\ Mi O A(j, k) = 0 }.

Lemma. For each i there exist arbitrarily large integers m so that for all r,

C\"'=¿,J(i, j ) # 0. (Intuitively for fixed i annulifar enough out on Ek miss M¡.)
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Proof. Let m(i) be one greater than the number of elements in the finite set

UAss,770(Fr(A/,) n Ek). We first show that for fixed i any zzz(z') of the sets J(i, j)

contain all but a finite number of the integers. Indeed, if k <£ J(i, j), then Fr(A/,) O

A(j, k) # 0. This cannot happen for m(i) distinct values of y since Ek O Fr(A/,)

has fewer than zrz(z') components.

Suppose for some z the lemma is false. Then for all sufficiently large m, there

exists r with (")"'=„ J(i, j) = 0. Lety'(l) > i be sufficiently large and choose r(l) so

that n^Kir^O'» j) " 0- Inductively choose j(s), r(s), s = 2,...,m(i), so that

j(s)>j(s - 1) + r(s - 1), and D^^s)J(i, j) = 0. Let k > j(m(i)) + r(m(i)) +

1. Then for each s = 1,2,.. .,m(i), there exists j'(s),j(s) <j'(s) ^j(s) + r(s), so

that k <í J(i, j'(s)). Then k G Ufi'^z, j'(s)), which contradicts the assertion of the

last paragraph. The lemma is proved.

Notice that if k G n™=+,¿.7(z, j), then the annulus on Ek bounded by A„, and Xm + r

does not meet M¡.

We will construct a singular plane in M whose only singularities are double

curves. We realize this plane as the union of an embedded disk A0 and embedded

annuli A¡ so tirata, O A■+ 0 iff \i — j\ < 2. Moreover, A¡ O dAl+1 = dA¡ O Aj+l is

a single component of the boundary of each.

Let A0 be the disk bounded by Xx on E2. Let z(l) be an integer such that

A0 c A//(1). Let zzi(l) be an integer such that, for all r, 0^1^0(1), j) is not

empty. The existence of m(l) follows from our lemma.

Let Ax be the annulus bounded by Xx and Xm(X) on Fm(1) + 1. Let z'(2) be an integer

such that Ax c Mj(2), and let w(2) > zzz(l) be an integer such that for all r,

njA&JrX'ffií /)'+ 0- Choose zc(2) g Ç]fi2lwJ(i(l), j), which is not empty by our
choice of zzz(l). Then let A2 be the annulus on Ek(2) bounded by A„,(1) and A,„(2).

Observe that A2 O A0 c A2 O A/,(1) = 0.

Now we will inductively choose i(s), m(s), k(s), and As. First we choose i(s) so

that As_x c A/,(s). Then we choose m(s) > m(s - 1) so that, for all r,

n7im(^)/(i(í), j) * 0, which is possible by our lemma. Next k(s) is chosen in

ny¡í^(,_!)/(/(*), y), which is not empty by our choice of m(s — 1). Finally, As is the

annulus on Ek(s) bounded by Am(J_1( and Xm(s). Notice that As_2 O As c Mi(s_X) O

As = 0 by choice of k(s).

We observe that a map/': R2 -» M which, in polar coordinates sends {(r, 0)\n <

r < zz + 1} homeomorphically onto A„, satisfies all the hypotheses on / in the

statement of the theorem. Moreover, the singularities of / ' are double curves in the

interior of the annuli An. We show how to remove these singularities by cut and

paste in order to obtain the proper embedding g.

For zz 3s 1 let A be a component of int(An) O int(An + x). Since a boundary

component of An does not represent an element of G, it follows that A is essential in

An iff A is essential in An + X. Each essential A splits A„ into two annuli: an inner one

which meets aAn_x, and an outer one. For each zz > 1 in turn, choose A essential so

that its inner annulus on An contains no further essential components of int(,4„) O

int(An + x). Replace An by the inner annulus of A on A„, and An + X by the outer

annulus of A on A +x. For the case zz = 0 we choose A innermost on A0, essential on
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Ax. Replace Ax by the outer annulus of A on Ax, and A0 by the disk bounded by A on

A0. Now for every n > 0, int(An) O int(^„+1) consists of simple closed curves,

inessential on both.

For zz = 0,1,2,... let B2n = A2n. Suppose A is an innermost simple curve on B2n

in A2n+X O B2n. Then A bounds a disk D on A2n + l, and we may replace a slightly

larger disk on A2n + X in the usual way with a disk parallel to the disk bounded by A

on B2n. After a finite number of such cuts we may assume that A2n + X no longer

meets B2n. It is, however, possible that A2n+X now meets A2n_x, but only in a small

neighborhood on F2„. In this case we replace disks on A2n_x by disks parallel to

disks both on B2n and A2n + X. Thus A2n + X misses both B2n and A2n_x. Finally, using

cuts, A2n_x can be assumed to miss B2n. Now B2n_x is the annulus resulting from

A2n_x, and U„F„ is a nonsingular plane. If B2n+X O M¡ =/= 0, then (B2n U B2n + 2) O

M, # 0. Thus, U „ Bn is properly embedded in M. There is a homeomorphism of R2

onto U„F„ which satisfies the conditions of the theorem.
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