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MEASURES INVARIANT UNDER A LINEAR GROUP1

LARRY BAGGETT

Abstract. This paper deals with the question of when there exists on a Euclidean

space a nontrivial probability measure p which is invariant under a group V of

integer matrices. Necessary conditions on T and the dimension are discussed. It is

shown that nontrivial examples do exist, but only in dimensions > 6. In fact, the

only explicit example given is in dimension 10.

1. Introduction. Let T be a group of in vertible n X n (usually integer) matrices. We

investigate the following: Under what conditions does there exist a nontrivial,

T-invariant, Borel, probability measure on R". The point mass at the origin is always

invariant, so by " nontrivial" we shall mean a measure that is singular with respect to

this point mass. We are also interested in the question of when there exists a faithful

invariant measure p, by which we mean that, for each y inT, there exists a Borel set

E in R" such that the p measure of the symmetric difference between F and y(F) is

not 0. Equivalently, p is faithful if for every y in T there exists a Borel set E such that

u-(E O y(E)) =£ p(E). It is not clear a priori that invariant measures exist at all, and

our first goal is to establish some necessary conditions on n and T. Then, we give

some examples, i.e., some sufficient conditions for their existence.

We are forced to extend slightly the notion of an "integer matrix". For a positive

integer q, we let SL(zi, Z/q) denote the group of zz X zz matrices, of determinant 1,

each of whose entries is a rational number with denominator < q. We derive results

for subgroups of this group rather than just those of SL(zz, Z).

This work grew out of a problem in representation theory (see Theorem 2.6

below), and the author wishes to thank the harmonic analysts at the University of

Rome for providing helpful sounding boards as this research evolved. In addition,

this entire project resulted from the stimulation of Dennis Sullivan's visit to the

University of Colorado in 1980.

2. Some necessary conditions.

2.1. Lemma. Let A be an n X n real matrix, and let p be an A-invariant Borel

probability measure on R". Then p is supported on an A-invariant subspace V of R" such

that the restriction of A to V belongs to a compact group of automorphisms of V.
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Proof. We may assume that the smallest A -invariant subspace of R" which

supports p is all of R". Let p denote the Fourier transform of p, i.e., p(z) =

fe'(z-x) dp(x). Then p(A'(z)) = p(z) for every z in R", where A' denotes the

transpose of A. If z is an eigenvector for A' with real eigenvalue A, and if |A| # 1, it

follows that p(tz)= 1 for all real t (the orbit of tz under A' has 0 as a limit point).

This implies that p is supported on the orthogonal complement to z in R". Similarly,

if A' has a nonreal eigenvalue A, with |A| =£ 1, then there exists a two-dimensional

subspace of R" in which the orbit of any nonzero point has 0 as a limit point (the

orbit being a spiral), and p is again supported on the orthogonal complement to this

subspace. Hence, we may assume that the eigenvalues of A' all have unit length.

Write A' = S + N, where S is semisimple, N is nilpotent, and S and JV commute.

It will suffice to show that N = 0, for then A would be semisimple and have all its

eigenvalues of unit length, whence it would be contained in a compact group. If N is

not 0, we may choose a z in R" so that N(z) # 0, but N2(z) = 0. Then

p(tz) =p(A'k(tz)) =p((S + N)k(tz))=p(Sk(tz) + ktS"-^))

for all real t and all positive integers k. We see from this, by taking t small and k

appropriately, that for any positive numbers r, s, and e, with r < s, there exists a w

in R", with r < \\w\\ < s, and |1 — p(w)\ < e. Then it follows that for any positive r,

there exists a w in R" with ||w|| = r andp(w) = 1. Hence, the additive subgroup K of

R", consisting of the elements w for which p(w) = 1, is a closed and uncountable

subgroup and therefore has positive dimension. However, p is supported on the

orthogonal complement to K, which implies that p is supported on a proper

subspace of R", and this is a contradiction.

2.2. Theorem. Let Y be a group of n X n real matrices, and let p. be a T-invariant,

probability measure on R". Suppose V is the smallest subspace ofR" which supports p.

Then

(i) V is T-invariant.

(ii) The restriction ofTto V is contained in a compact group K of automorphisms of

V.

In addition, if p is ergodic, then

(iii) p is the unique K-invariant measure on some K-orbit in V.

Proof. Part (i) follows because the intersection of two subspaces of measure 1 is

again a subspace of measure 1. From Lemma 2.1 we know that the restriction to V

of each y in V only has eigenvalues of unit length. If K is defined to be the closure of

the set of restrictions to V of the elements in T, then it follows that the characteristic

polynomial (t - A,) ■ ■ ■ (t - Xm) of an x in K is the limit of characteristic poly-

nomials (t - X{) ■ ■ • (t - XJm) of elements in the restriction of T to V. Hence, x also

only has eigenvalues of unit length. From the structure theory for Lie groups, we

know that such a closed subgroup K of matrices is necessarily compact. Finally,

since the map x -» p ° x is continuous from the space of zz X zz matrices into the

space of probability measures on R", it follows that p is A"-invariant. Then (iii) is a

classical result if p is ergodic.
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2.3. Theorem. Suppose T is an infinite group of n X n integer matrices. Then no

nontrivial T-invariant measure exists if

(i) T acts irreducibily on R" (noproper invariant subspaces);

(ii) T contains an element each of whose eigenvalues is of nonunit length;

(iii) T is SL(z?, Z/q)for q a positive integer.

Proof, (i) and (ii) follow immediately from the preceding lemma and theorem,

(iii) is true because SL(zz, Z/q) contains elements each of whose eigenvalues has

nonunit length.

Remark. Let T be a group of zz X zz matrices for which a nontrivial T-invariant

probability measure exists. Then there exists a basis of R" in which each element of T

has the block form [g *], where the ^4's belong to a compact group of automor-

phisms of a T-invariant subspace V (the smallest subspace supporting p). If p is

faithful, then the map y -* A is one-to-one, which implies that T is algebraically

isomorphic to a subgroup of a compact Lie group. Conversely, suppose p is not

faithful and y is an element of T for which p.(E O y(E)) = ¡x(E) for every Borel set

F. It follows that if jc is an element of R" for which y(x) ¥= x, then there exists a

neighborhood U of x with ¡i(U) = 0. Hence, p is supported on the set of y-fixed

vectors in R". Because V is the smallest subspace supporting p, we see that the

matrix A corresponding to y is the identity. Therefore, p is faithful if and only if

y —> A is one-to-one. As a consequence of this observation, we have

2.4. Proposition. If T is solvable, and if a faithful T-invariant probability measure

exists, then T is finite modulo a torus.

More specifically, we have

2.5. Proposition. If T is a discrete, infinite, cyclic subgroup of SL(3, R), then no

faithful T-invariant probability measure exists on R3.

Proof. Let y be a generator for T, and suppose such a p exists. Represent y in

block form as [qc] according to the above remark. The matrix A cannot be 3 X 3,

for then the infinite discrete group T would be contained in a compact group. The

matrix A cannot be 1 X 1, for then it would be ± 1, and p would not be faithful.

Therefore, A must be a 2 X 2 matrix with eigenvalues Xx and A^ with |Aj| = 1. But

then the matrix C is 1 X 1 and must in fact equal 1 (det(y) = 1). The characteristic

polynomial for y is then of the form (x — l)(x2 + bx + 1). Hence,

Xx = (-b ±(b2 - 4)1/2)/2,

and since \XX\ = 1, we have b = ±2, whence Xx= ±1; but again p would not be

faithful, so the proof is complete.

Definition. A locally compact group G is said to have Kazhdan's property T if

the trivial representation of G is an isolated point in the unitary dual of G. See [1].

A relationship between property T and the existence of invariant measures is the

following:

2.6. Theorem. Let T be a group of n X n matrices, and let G be the semidirect

product R" * T. Then G has property T if and only if T has property T and there exists

no nontrivial T-invariant probability measure on R".
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Proof. Suppose G has property T. Then the quotient group T has property T [1].

If there is a nontrivial T-invariant probability measure p on R", define a sequence

{p,,} of measures p„ by p.„(E) = p(nE). Then p„ also is nontrivial and T-invariant,

and {p,,} converges weakly to the point mass at 0. If -nn denotes the unitary

representation of G defined on F2(p„) by

l^Jf)}(y) = e'^y(y~\y)),
and if we take vn to denote the constant function 1 in L2(p.n), then ([77,, (vn)], vn)

converges to 1 uniformly on compact subsets of G, which implies that the trivial

representation of G is not isolated.

Conversely, suppose T has property T but G does not. Let ( ttn} be a sequence of

nontrivial, irreducible, unitary representations of G, and let { vn} be a sequence of

unit vectors for which the functions ([iTn (vn)\, vn) converge uniformly on com-

pacta to 1. Such sequences can be found if the trivial representation is not isolated.

From Mackey theory, there must exist a sequence {vn} of probability measures such

that w„ is equivalent to the representation p„, acting in L2(vn, Kn) (Kn a Hubert

space), defined by the formula

[p„lJf)](y)=p(y,y)e^->)R,l(y,y)(f(y-1(y))),

where p is a scalar function (the square root of a certain Radon-Nikodym derivative),

and F„ is a "cocycle" for the action of T on R" with coefficients in the unitary group

ofK„.

Because T has property T, we know that for large n there exists a function /„ in

L2(vn, Kn) which is T-invariant, i.e.,

p(y,y)Rn(y,y){fÂy-l(y))) =fÂy)

for all y in T. Taking norms, we find that

p(y,y)\\fÁy-l(y))\\ = \\fÁy)l
which implies that the Radon-Nikodym cocycle p is a coboundary, whence vn is

equivalent to a finite T-invariant measure p„. This measure is nontrivial, for

otherwise 77,, would be the trivial representation. This completes the proof.

Remark. A completely analogous argument shows that a general semidirect

product N * H has property T if and only if 77 does and there does not exist a

sequence {p,,} of nontrivial 7/-invariant probability measures on the unitary dual N

which converges weakly to the point mass at the trivial representation of N.

As a consequence of the preceding theorem, we deduce

2.7. Proposition. Let Y be a "lattice" subgroup of SL(zz,R). Then no nontrivial

T-invariant measures exist on R".

Proof. For zz < 2 this follows from Theorem 2.3. Since, for zz > 2, all such lattices

(discrete subgroups of cofinite volume) have property T, we may prove this result,

using Theorem 2.6, by verifying that R" * T has property T. But, using Theorem 2.6

in the other direction and Theorem 2.3, we know that R" * SL(zz, R) has property T,

whence so does R" * T, it being a subgroup of R" * SL(zz, R) with cofinite volume.
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2.8. Theorem. Let q be a positive integer, let T be a subgroup of SL(n, Z/q), and

suppose that p is a faithful T-invariant, probability measure on R". Let V be the smallest

subspace of R" which supports p, and represent each element y of T in block form as

[£ £], where A belongs to a fixed compact group K of transformations of V. Then

(i) if Y is nonamenable, zz ̂  6;

(ii) ifT has property T, zz > 7;

(iii) if dim V is odd, and T has property T, the matrices C are at least 5X5 and

zz > 8.

Proof. The kernel of the homomorphism y -» det(A) is a subgroup of finite index

in T, so we may replace T by this subgroup and assume, without loss of generality,

that det(A) = .1. If T is nonamenable, then dimK> 3. Also, the map y -* C is a

homomorphism of T whose kernel M is a discrete subgroup of the group N

consisting of all zz X n matrices of the form [q f ], where A belongs to K and B is

arbitrary. This group N is the semidirect product of an abelian group (the B 's) and

the compact group K, whence N and M are both amenable. Hence, if T is

nonamenable, then so is the group of C's, whence the C's must be at least 2x2.

Therefore, if dim V > 4, part (i) is clear.

If dim V = 3, then each matrix A has 1 as an eigenvalue. It then follows from

Lemma A below that each matrix C also has 1 as an eigenvalue. If the C's were only

2 X 2, it would follow that 1 is the only eigenvalue for each C. But then the group of

C 's would be unipotent, hence amenable. Therefore, if dim V is 3, then the C 's are

at least 3x3, and this completes the proof of part (i).

Similarly, if T has property T, then the group of C's must have property T, so

they must be at least 3x3. This establishes (ii) when dim V ^ 4. Of course, (iii) will

imply the rest of (ii), and (iii) is a consequence of Lemmas A and B below.

Lemma A. Let n be the smallest integer for which there is a positive integer q and a

nonamenable subgroup Y of SL(zz, Z/q) such that a faithful, Y-invariant, probability

measure p exists on R". Let V be the smallest (proper) subspace ofR" which supports

p, and represent the elements y of Y in block form [q *], where A has determinant 1 and

belongs to a compact group of automorphisms of V. Let W denote the set of fixed

vectors in R" for an element y of Y, and assume that WO V is nontrivial. Then W is

not contained in V. In particular, if the matrix A has 1 as an eigenvalue, then the

corresponding matrix C has 1 as an eigenvalue.

Proof. We argue first that, by minimality of zz, the group T cannot leave invariant

any proper subspace of Q". Indeed, if S is a proper, T-invariant subspace of Q"

which spans an m-dimensional subspace T of R" (with m < n), let <j>x be the

homomorphism which sends an element of T to its restriction to the subspace T, and

let <b2 be the homomorphism which sends an element of T to its projection onto the

quotient space R"/T. Let p.x denote the measure on T obtained by restricting p, and

let p2 be the projection of p onto the quotient space. One sees that at least one of the

pairs (<i>,(T), p,) satisfies the hypotheses of the lemma and acts in a space of smaller

dimension. Therefore, no such T-invariant subspace S of Q" can exist.
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Now, the subspace W is spanned by vectors with rational coordinates (being the

range of a transformation of the formp(y) for some rational polynomial p). Hence,

the T-invariant subspace W', generated by W under T, contains a nonzero T-

invariant subspace of Q". If W is contained in the proper, T-invariant subspace V,

then so is W'. But this implies that T leaves invariant a proper subspace of Q".

Lemma B. Let Y be a noncompact closed subgroup of SL(zz,C) and suppose Y has

property T. Assume that each element of Y has 1 as an eigenvalue. Then n ^ 5.

Proof. Let C7 denote the algebraic closure (over the complex field) of T, i.e., G is

the set of all zz X n matrices M such that whenever a polynomial p satisfies p( y ) = 0

for every y in T then p(M) = 0. This algebraic closure G is a group, whence an

algebraic group containing a noncompact closed subgroup T having property T. If S

is the Levy factor of G, then 5 must be nontrivial, and must also contain a

noncompact closed subgroup which has property T. Similarly, the commutator

subgroup L of 5 is a semisimple Lie group containing a noncompact closed

subgroup having property T.

If p is the polynomial det(M — 1), then p(y) = 0 for every y in T, so that

det(M — 1) = 0 for every M in L. The lemma now reduces to finding the minimal

dimension n for which there exists a connected semisimple Lie group L, containing a

noncompact closed subgroup having property T, such that each element of L has 1

as an eigenvalue. An examination of the list of classical simple Lie groups and their

" small" representations shows that dimension 5 is the smallest.

3. Examples. We see from Theorem 2.5 that dimension 4 is the smallest dimension

in which an infinite group T of integer matrices can possibly have a faithful

invariant measure.

3.1. Example. Let A be the 4 X 4 matrix

0 0 0-1
10 0-3
0 10 0
0    0     1-3

with characteristic (minimal) polynomial x4+3x3 + 3x + l. One shows by calculus

that this polynomial has exactly two real zeroes and, hence, two complex zeroes.

Also, if A is a root, than so is 1/A, so A is represented in an appropriate basis by the

matrix

cos(a)

-sin(a)

0
0

sin(a)

cos(a)

0
0

0

0

0

1/A

where a is not a rational multiple of 2tt because e'a is a root of the above

characteristic equation which no root of unity can satisfy. Lebesgue measure on any

circle in the plane spanned by the first two coordinate vectors in this basis will

clearly be a faithful invariant measure on R4 for the group generated by A.
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Remark. In general, we find it difficult to construct groups of integer matrices for

which faithful invariant measures exist. The most interesting result we have found is

the following:

3.2. Theorem. There exists a positive integer q and a subgroup Y of SL( n, Z/q) for

which a faithful, Y-invariant, probability measure exists on R", such that

(j) Y has property T,

(ii) zz < 10.

Proof. We begin by recalling the group G defined by Sullivan in [2]. Let B be the

quadratic form on R10 defined by

ai      i     Xj     i     ^3     '     *•        Xa     i     ¿*        Xe     i     A¿      í     X-j     I     AO ¿»        Xq 2. "^10'

and let 77 be the group of 10 X 10 matrices ["■], where A preserves the positive

definite form represented by the 5 X 5 matrix

h      o
0     21/2/2

and where Ä preserves the indefinite form represented by the matrix

73 0

0     -2^%

(Im denoting the zz? X zzz identity matrix). Sullivan's group G is the subgroup of 77

consisting of those matrices in 77 whose entries belong to the ring Z[21/2] for which

A' = a(A), where a is the automorphism of Z[21/2] defined by a(21/2) = -21/2.

Sullivan showed that G is a lattice in 77 (and hence has property T) and the map

g —> A is an isomorphism onto a dense subgroup of the "orthogonal" group K

preserving that positive definite form. Let G' denote this isomorphic copy of G in K.

Next, let TV denote the additive subgroup of R5 consisting of the vectors whose

coordinates belong to the ring Z[21/2], and let L denote the semidirect product

N*G' (G' leaves TV invariant). Obviously, L is dense in the semidirect product

R5 * K. Since this latter group fails to have property T (Theorem 2.6 if nothing else),

it follows that L fails to have property T. But TV is isomorphic to Z10, and G' is then

a group of automorphisms of Z10, and so is isomorphic to a group T of 10 X 10

integer matrices. Hence, the countable group L is isomorphic to the semidirect

product Z10 * T, which is a discrete subgroup of cofinite volume in the semidirect

product R10 * T.

Since L fails to have property T, it follows that R10 * T also fails to have property

T. Then, by Theorem 2.6, there must exist a nontrivial T-invariant measure p on R10,

and we let V denote the smallest subspace of R10 which supports p. If p is not

faithful, let J denote the subgroup of T consisting of the y 's for which the p measure

of the symmetric difference of y(F) and F is 0 for every Borel set F. If W denotes

the intersection, over all y in J, of the subspaces of y-fixed vectors, then W is a

proper T-invariant subspace (because J is normal). Further, W contains V and is

spanned by vectors having rational coordinates with denominators bounded by a
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positive integer q. But then T would leave invariant a proper subspace of Q10, in

which case we could reduce (as in the proof of Lemma A) to an example of even

lower dimension. This completes the proof.

Remark 1. We cannot verify that the T of the preceding proof acts irreducibly on

Q10, although it seems likely. If it acts reducibly, i.e., there exists a discrete subgroup

T of SL(9, Z/q) which has property T and for which there is a faithful T-invariant

probability measure, the arguments of §2 can be used to show that there exists a

dense subgroup of SO(3) with property T and, therefore, to prove the uniqueness of

rotationally invariant, finitely additive measures on the 2-sphere. See [2].

Remark 2. Sullivan's construction can be performed in all dimensions zz > 2, not

just n = 5. The corresponding groups G fail to have property T for zz < 5, so that we

cannot prove, using the above arguments, the existence of invariant measures for the

corresponding T 's, Theorem 2.6 no longer being applicable. It seems likely, however,

that T-invariant measures do exist for all zz > 1 for these T 's.
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