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ERRATUM TO “GAUSSIAN MEASURE
OF LARGE BALLS IN A HILBERT SPACE”

C.-R. HWANG

It has been brought to my attention that the argument used on the third line
from the top on page 108 of [2] is incorrect. The following correction was suggested
by A. de Acosta:

Assume that dim(Support P) > 3 (if not, one has a Gaussian measure on a
Hilbert space of dimension at most 2, and elementary arguments give the result).
Then, by [1, p. 322 or 3, p. 389], F" has a bounded uniformly continuous density.

Let p = 1/21, f(t) = (1 = F(t)) (¢ 2 0), 8(6) = fig o) ¢~ (1)

Note that df has a unit mass at 0. Integration by parts gives

(1) 0(c) = cyp(c)-

Since, as shown in the paper, ¥(c) ~ Kc=%/2 (¢ — 0), where K is a constant,
we get from (1) that
0(c) ~ Kck/2+1,

By the Tauberian theorem,

et (1 - F(t)) ~ K1t*/*=1  (t — 00).
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