
proceedings of the
american mathematical society
Volume 94, Number 2. June 1985

PREPROJECTIVE PARTITIONS AND THE DETERMINANT

OF THE HOM MATRIX

K. IGUSA' AND G. TODOROV

Abstract. If A is an artin algebra and ind A is the set of isomorphism classes of

indecomposable finitely generated A-modules, then there is a partition ind A =

U,S(,P,, called the preprojective partition. We give an algorithm for computing this

partition, which is given only in terms of numerical properties of the Auslander-

Reiten quiver of A.

If A is of finite representation type, then there are two essentially different proofs

that the matrix Horn = (lengthEnd(N)/rEnd(N> HornA( M. N)), where M, N e ind A

has determinant + 1 [IT1, Wl, Zl], We show that the paths between the Horn matrix

and the identity matrix in GL„(R) given by these two proofs are homotopic.

0. Introduction. If A is an artin algebra Auslander and Smalo [AS] constructed a

partition of the set of isomorphism classes of indecomposable A-modules as ind A

= UP,, / g N U {oo}, called the preprojective partition. This partition is char-

acterized by the following properties.

Proposition 0.1 (Auslander and Smalo). (a) P0 consists of the indecomposable

projective A-modules.

(b) P¡ is finite for each i < oo and is minimal with respect to the property that each

indecomposable module not in P0,... ,Pj   j is a quotient of a direct sum of modules from

Pi-

le) Px is the collection of indecomposable modules not in U,<00P ,-

A module is called preprojective if it is in Ui<xP,.

The first two classes P0 and Px are easy to determine, but a description of

arbitrary P¡ given P0,... ,P¡ ¡ involves morphisms between modules. For hereditary

artin algebras there is a simple algorithm for determining P, if Pi_l is known [T].

Also for selfinjective algebras of type An there is an algorithm for determining the

preprojective partition [B]. More details about preprojective partitions for hereditary

and algebras stably equivalent to hereditary algebras can be found in [Z2 and WZ].

In the first part of this paper we give an algorithm for computing the preprojective

_
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partition   for   arbitrary   artin   algebras   using   only   information   given   by   the

Auslander-Reiten quiver.

Original motivation for this paper came from trying to understand the relation

between different proofs of the fact that the determinant of the matrix Horn =

(length End(A,)/rEnd(Af) Horn A(M, AT)) for an algebra of finite representation type is

+ 1 [DF, IT1, Wl, Zl], where rEnd(AZ) denotes the radical of End(W) and M and N

run through a complete set of the representatives of the isomorphism classes of

indecomposable A-modules. In [IT1 and Wl] it was shown that there is a path from

the inverse of the Horn matrix to the identity matrix. In this paper we show that this

path is homotopic to the inverse of the path which is given by factorization of the

Horn matrix into elementary matrices as in [Zl]. The proof in [Zl] was done by

considering algebras of global dimension < 2 and their Cartan matrix, i.e., the

matrix (lengthEnd(e)/rEnd(ö)Hom(P, Q)), where P, Q run through the isomorphism

classes of indecomposable projective modules. For the induction step Zacharia

proves the existence of a simple module with projective dimension < 1 and

eliminates the projective cover of that module. If A is of finite representation type

with Mx,...,Mn being representatives of the isomorphism classes of indecomposable

A-modules, then the corresponding Auslander algebra T — EndiJJjLjM,) has global

dimension < 2 and indecomposable projective T-modules correspond to indecom-

posable A-modules. We show here that the method of eliminating projectives for the

Auslander algebra T can be done in the order of the preprojective partitions of

ind A.

1. The algorithm to compute the preprojective partition. Let A be an artin algebra

(not necessarily of finite representation type) and let Uy>0Py be the preprojective

partition of ind A = the set of isomorphism classes of indecomposable A-modules.

Let C, be the full subcategory of mod A whose objects lie in U/</£/• We denote by

mod C,op the category of finitely generated contravariant functors from C, to the

category of abelian groups. We will show that mod C°p has global dimension < 2.

Furthermore, if A' G P¡ then the simple contravariant functor from C¡ c mod A to

the category of abelian groups given by ( , X)/r( , X) has projective dimension < 1

in mod C,op, where ( , X) = HomA ( , A"). We denote by add C¡ the additive subcate-

gory of mod A generated by Q.

Lemma 1.1. (i) Let f: Y -» X be a A-homomorphism. If Y is an object in add C¡,

then im fis an object in add C¡.

(ii) // X is a A-module then there exists a unique maximal submodule of X which lies

in add C¡. We denote it by t, X. (This is also called the trace of add C¡ in X.)

(iii) ( ,TjX) = (, X) as functors on add C¡.

Proof, (i) follows from 0.1(b), and (ii) follows from (i). (iii) follows trivially.   D

Theorem 1.2. gldim(modÇ°P) < 2.
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Proof. If C is any additive category, then gldim(modCop) < 2 if and only if C

has kernels, since X -+ ( , X) is a left exact functor. Let/: X —> F be a morphism in

add Q. Then r,(ker/) is the kernel of / in add Q. Since mod Ç,op = mod add £op, it

follows that gl dim(mod Çfp) < 2.    D

We now give conditions for a module to be in P¡.

Lemma 1.3. Let B g ObÇ,, let a: E(B) -* B denote the right minimal almost split

map for B with ker a = AB, and let S = ( , B)/r( , B). Then the following sequence of

functors restricted to add C, is exact:

0 -> ( , T,Aß) ^ ( , T:E(B)) ^i,!W)-*S-*0.

Proof. This follows from the exactness ofO->(,A£)->(,.E(5))->(,.B)->S

-* 0 [AR] and Lemma l.l(iii).    D

We will need the following characterization of modules in P¡: An indecomposable

A-module X is in P¡ if and only if any epimorphism Y -> X with Y G add Q splits,

i.e., X is a splitting projective in add C,.

Theorem 1.4. Let A be an art in algebra, UJ>0P ^e preprojective partition and

Q = VjMtij- Let B G °hQ- Then B g £ if and only if r( , B) = ( , A) in mod£op
/or iowe A-module A and the induced map A —> B is a A-monomorphism.

Proof. Suppose r(, B) = (, A) in mod C,op and ^4 -» B is a monomorphism:

A"

A* >-»      £

If A1 is in add Ç, and /: A -* B is a nonsplit epimorphism, then ( , X) '-* ( , B) -*

( , B)/r( , B) is zero. Consequently / lifts to A. But then im/c A g B. Contradic-

tion. Hence B is a splitting projective in add Q. Therefore B g P..

Now suppose that B g j». Then B is a splitting projective in C,. Consider the

following commutative diagram with exact rows:

0     ->     A*      '       £(5)       A      5

î î T

o     ->      a:      ->     t,-£(B)      ^»     yl     -»     0

Let ^ = ar/E(B) and AT = ß~1rlE(B) = ker a' in the above diagram. Then A ¥= B,

since otherwise t¡E(B) -» jB is a split epimorphism making a also a split epimor-

phism. So A -* B lifts to E(B) and consequently to riE(B). Thus a' is a split

epimorphism and K s r¡E(B)/A g Ob add C,.  But t,A5 goes to zero in A  so



192 K. IGUSA AND G. TODOROV

r,Aß c Í. Thus K = r¡AB.  So t,AP-> t,£(P) splits and the cokemel A  is a

submodule of B. Then by 1.3, (, A) = r(, B).    D

Corollary 1.5. //B g P, let r¡B denote the image of r¡E(B) in B, i.e. ( , r¡B) =

r( , B). Then t¡E(B) = r,BUr,AB.

Corollary 1.6. Let SeOb C¡. Then B lies in P¡ if and only if

1(B) + l(r,AB) - l(r,E(B)) > 0,

where I denotes the length of a module.

Proof. Suppose B g P,. Let A = r,B. Then 1(B) > 1(A) = l(r,E(B)) - /(t,AP).

Now suppose that B i£. Then there is an A g Ob add P, which maps onto B. This

map lifts to E(B) and therefore to t¡E(B), and thus t¿E(B) maps onto B. But t,A5

is always contained in the kernel of t,£(P) -» B.Sol(B) + /(t,AP) - /(t,.£(£)) < 0.

D

We now give an algorithm for computing the preprojective partition using 1.6.

Let KQ = A"0(mod A,LI) be the Grothendieck group of the set of isomorphism

classes of A-modules (we only consider finitely generated modules) considered as a

monoid under direct sum. Then K0 is the free abelian group generated by ind A. For

an indecomposable A-module X and ; > 0 let g,X = X + t,A A - riE( X) G K0. Let

M, be the integer matrix with rows and columns corresponding to the elements of

ind A so thatg, A = EyM,(F, X)Y where Y runs over ind A. Then the columns of

M0 are given by right minimal almost split maps for projectives and almost split

sequences (Auslander-Reiten sequences) for nonprojectives. These are known to

form a dual basis [A, FIT] to the standard basis ind A with respect to the bilinear

form given by dimEnd(N)/rEnd(N)HornA(M, N). Hence M0 is the inverse of the Horn

matrix.

Lemma 1.7. For each i > 0 the matrix M, satisfies the following:

(a) M,(F, A) = 0 // Y * Xand Y g P0 u  • • • U £_,.

(b) M,(X, X) = 1 ifX G P0 U  • • • U P,   v

(c) IfX g P„ Y it XandM,(Y, X) * 0, then l(Y) < /(A).

Proof, (a) and (b) follow from the equation g,X = A + ^AA" - tíE(X) =

IZyM^Y, X)Y and the fact that the indecomposable summands of t,A A and t,-jE(X)

are elements of C, = P, U P,+ [ U

(c) If A g P,, then by 1.5, r,X = ^E(X) - t,A A, so g,X = X - r,X. If Y * A"and

M,(Y, X) * 0 then Y c rtX g Aso l(Y) < /(A).    D

Lemma 1.8. If g,X is given, then g, + 1 X can be obtained by replacing each Y G P(

which occurs in g¡X — X by r¡Y and repeating the process for any new summands

obtained in this way which lie in P,.

Proof.

g,X= X- t,E(X) -ttAA,

g, + 1A=A-T,+ 1£(A) + T, + 1AA.
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Since r¡Y g Ob add C, and l(r¡Y) < l(Y) the process described must stop with all

modules but X being in P, + 1 U P/ + 2 U • • •. This process gives g, + 1A since ri+1r¡Y

= T, + 1Fforall Y g ¿>.    D

Lemma 1.9. The matrix M/ + 1 can be obtained from the matrix M¡ by eliminating all

nondiagonal entries in the rows which correspond to modules in P¡. Thus Mj + 1 = M¡E

for some invertible matrix E.

Proof. The process described in 1.8 corresponds to performing column operations

eyA-(-M,(F, A)) on M,, where emn(c) is the elementary matrix with l's on the

diagonal, c in the mn-entry, and O's elsewhere.   D

Lemma 1.10. Let V be the row matrix giving the lengths of all indecomposable

A-modules. Then the X entry of VM¡ is the length o/g;A. Furthermore, if Mj + l = M¡E,

then VMi+1 = (VM,)E.    D

Definition 1.11. Let N¡ denote the matrix M¡ with an additional row VM¡. Thus

Proposition 1.12. Let N¡ be as above. Then a module X is in P, // and only if the

additional row VM¡ in the matrix N¡ has a positive integer in the X position and X does

not belong to P0 U ■■■U£_,

Proof. If X is in P,, then, by 1.6, g,X > 0. Conversely, if g¡X > 0, then, by the

same corollary, X g P0 u • • ■ U P,.    D

This proposition gives us an algorithm for computing the preprojective partition.

Algorithm 1.13. (0) Let M0 be the matrix with columns given by right minimal

almost split maps. Let N0 be the matrix M0 with an additional row which has l's in

the projective columns and O's elsewhere.

(1) Given N¡ and P0,...,P,_, we get that P, consists of those X é P0 U • •'• XJ'£¡_-¡

so that the bottom row of N¡ has a positive number in the X position.

(2) A^ + j is obtained from N¡ by performing column operations to eliminate all

nondiagonal entries in the rows corresponding to the elements of P,.

Corollary 1.14. // A is of finite representation type, the matrix N¡ becomes (ry),

where V is the row matrix whose entries are the lengths of the indecomposable

A-modules.    D

To illustrate the algorithm we give a simple example. Let A be the selfinjective

algebra A = k[x]/(x3) with Auslander-Reiten quiver given by:
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Nn

A'i = N0en(\)

&- {*i};

/ i    -i    o *
1 2 -1

0-12

1       0       0 /

/ 1       0       0 \
-1      1      -1

0-12

1       1       0 /

/ 1       0      0^
0       1      0
-1   -1   1

\ 2       11

II 0 0^
0 1 0
0 0 1

3 2 1/

N¡ = ^e23(l)e21(l) =

^ = ^3,(1)^(1) =

£i = {*2};

li= {^};

lengths of modules.

2. A homotopy between two proofs that the det Horn = +1. Throughout this

section we shall assume that A is an artin algebra of finite representation type. Thus

M¡ — / for sufficiently large / and Algorithm 1.13 gives elementary matrices El,...,Ek

such that M0El

this gives a path

/. So Mn E'1 E{\ Since M0 1 is the Horn matrix

from / to the matrix M0 = Horn

h(t) = (tE;1 +(l - t)l) ■ ■ ■ {tE;1 +(l - t)l)

1 in GL„(R), where n = |ind A|. The path h(t) is

uniquely determined up to homotopy since the elementary matrices El,...,Ek are

uniquely determined up to Steinberg relations [M] by 1.7(c). (This is not important

since h(t) will be shown to be homotopic to a fixed path.)

There is another description of the inverse of the Horn matrix using the fact that

its columns are given by right minimal almost split maps and almost split sequences

(Auslander-Reiten sequences). Let C be the n X n matrix with entries CAB = SA¿íB

and let f be given by TAB = dimEnd(/)) Hom(( , A), r( , B)/r2( , B)). Thus T is the

matrix of irreducible maps. Then the inverse of the Horn matrix can be written as

Horn"1 = / - T + C, and in [IT1] it was shown that / - Tt + Ct2 is a path from /

to Horn"1 in GL„(R). In this section we shall show that the paths I - Tt + Ct2 and

h(t) are homotopic.

Definition 2.1. Let A, y g ind A. Then a A-homomorphism/: X -* Y is said to

have depth > i if f can be written as a sum of compositions of / or more irreducible

maps. The group of all A-homomorphisms X -* Y of depth > i is denoted by

r'(X, Y).

We shall now restrict ourselves to the following special case. Assume that for all

A, F g ind A there exists at most one integer i so that r'(A", Y)/ri+l(X, Y) ¥= 0. In

other words all nonzero maps A -» Y have the same depth.

Let K0[t] = A"0(mod A,LJ)[r]. For each A g ind A and i ^ 0 let f,A g KQ[t] be

given by f A = Y.YmYYtk where t,A = LIYmYY and k is the depth of the composi-

tion y c t, X c A. Since K0[t] is the free Z[/]-module generated by ind A, we may
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regard f,. as a Z[/]-homomorphism K0[t] -* K0[t]. For each A g P( let r¡X g K0[t]

be given by f¡ X = Y.YnYYtk, where rtX = UYnYYand k is the depth of Y c rçA" c X

Lemma 2.2. Le? A G P;. TTien:

(a)r,A=f,(£(A))i-f,(AA)r2.

(b)r, + 1r,A-=f, + 1A.

Proof. Suppose that y is a component of t,£( A) s t,A ALIr, A and let m, a, b be

the multiplicities of Y in r¡E( A), t,AA, r, A, respectively. Then m = a + b and the

coefficients of Tin r¡E(X), f. A A, r,Aare mtk, atk~1, btk + 1, respectively, for some k

by the Radical layers theorem [IT1].

Statement (b) follows from the equation t/ + 1/-/A= t, + 1A and the fact that the

depth of y c Z c X is the sum of the depths of Y c Z and Z c A" for each

component Z of r,A and Y of t, + 1Z. (This uses again the Radical layers theorem.)

D

For each A" G ind A and i > 0 let g, A = A - ri(E(X))t + f,(AA")/2 g K0[t]. Let

M'i g GL„(Z[?]) be given by g,X = LYM,(Y, X)Y. Since f0X = X for all X we have

M{) = I - Tt + Ct2.

Proposition 2.3. Suppose that A is an artin algebra of finite representation type

which satisfies the condition that for all A, y G ind A there exists at most one integer i

so that r'(X, Y)/r' + l(X, Y) + 0. Then M0(t) is homotopic to any path h(t) given by

Algorithm 1.13.

Proof. If A g P(, then 2.2(a) implies gX = X - r:X. This gives us the analogue

of 1.7. Lemma 2.2(b) gives us the analogue of 1.8. Thus M0 can be written as a

product of elementary matrices etJ(u) where u G Z[í]. If t = 0, then M,(0) = / for

all i, so w(0) = 0 in each e¡j(u). If / = 1, then the column operations etj(u(l)) are

the ones that transform M0(l) = M0 to / as in Algorithm 1.13. Thus we have a

continuous function H: [0, l]2 -* GL„(R) given by H(s, t) = ne,y(i«(i)) which

satisfies H( s, t) = His = 1 or? = 0, H(0, t) = M0(t) and H(s,l) = h(l - s). Thus

H gives a homotopy from M0(t) to h(t). Since the nondiagonal entries of M¡ can be

eliminated in any order in 1.13(c), we can obtain any h(t):

M0(t)

We now consider the general case. Let T be the modulated Auslander-Reiten

quiver of A. In [IT2] it was shown that T admits a finite covering/?: f -» T so that

for all x, y g f0 all nonzero maps x -» y in the mesh category of f have the same

depth. Then f is a standard covering and so there is a unique standard algebra A

such that ind Ä = mesh(f ). Let A be the artin algebra associated to f. Then Ä
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satisfies the special condition used above, so 2.2 and 2.3 hold for A. Since f is by

construction a normal covering of T (i.e. corresponds to a normal subgroup of ^T),

the subgroup G of the automorphism group of the underlying valued quiver of T,

which preserves fibers, acts transitively on each fiber. Thus each x g p~l(x) lies in

the same preprojective partition P, of ind Ä, since the preprojective partition is an

invariant of the underlying valued quiver by Algorithm 1.13.

Let K0[t] = AT0(ind A,LI)[i], let K0[t] = K0(inà A,U)[t], and let /?*: K0[t] -+

K0[t] be the Z[']-homomorphism induced by p. For each X g ind A = ro let r¡X,

f¡X g K0[t] be given by ¥¡X = /?*t,Â, where À is any element of p'l(X) (it is well

defined since G acts transitively on each fiber) and

(2.4) r,X = t-,(£(A))í - f,(AX)t2.

Lemma 2.5. Let p: T -» T be a finite covering such that, for all x, y g f0, all

nonzero maps x —> y in the mesh category off have the same depth. Then:

(a)r,A= f,A(l).
(b)P,=p-lP,.

(c) IfX G P„ then r,X = p^Xfor any X G p'\X) andr\X = f,X(\).

Proof. All statements are easily seen to hold for i = 0. Suppose by induction that

the lemma holds for integers less than /'.

Let A g Pr If j > i, then X g ObÇ, by (b) so f,A = X. Thus t,A = A = pmX =

p*i,X=T,X=j,X(l).\{j<i,ÛYcn

T.X = rtr.X = f,(ry A)(l) = T,(ry A"(l))(l)

= ¡ffjXii) = pWjX(l) = p^X(l) = t,A-(1).

Here (1) holds by induction on the length of A and (2) holds by induction on /. This

proves (a),. By 1.6, (a), implies (b),. By (2.4) and 2.2(a), (b), implies (c),.    D

Theorem 2.6. For all artin algebras A of finite representation type, the paths

I — Tt + Ct2 and h(t) from I to Horn"1 are homotopic in GL„(R) for any h(t) arising

from A Igorithm 1.13.

Proof. For each A g ind A and ; > 0 let g,X = A - ri(E(X))t + t,(AI)î2 g

Ka[t], Let M, g GL„(Z[í]) be given by g,A" = £yM,(y, A")y. Then by (2.4) and 2.5

everything works as it did in 2.3. One crucial point is that each component of f¡X for

A g P; has length less than the length of A. This follows from 2.5(c).    D

Another consequence of 2.5(b) is the following

Proposition 2.7. Let p: T —* T be any covering map of finite Auslander-Reiten

quivers ( valued or modulated as defined in [IT2]). Then /?_1P, = P, for all i > 0.

Proof. Let p: A -» T be a covering which satisfies the special condition that for

all x, y g A all nonzero maps x -* y in mesh A have the same depth. Let q: f —> T
z    q P   ~    P

be a finite covering such that the composition r^>A-»T->risa normal covering.

S   pq  »
Then r —> T is a normal covering and, by 2.5(b),

~L = Pdih) = pq(ppqY\p,) = p-\P.)-     n
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