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NIL DERIVATIONS AND CHAIN CONDITIONS

IN PRIME RINGS

L. O. CHUNG AND Y. KOBAYASHI

Abstract. It is known that in a prime ring, a derivation nilpotent on a nonzero ideal

must also be nilpotent in the entire ring. In this paper we show that a derivation of a

prime ring is not necessarily nil even though it is nil on a nonzero ideal. It is nil if the

ring satisfies the ascending chain condition on left (right) annihilator ideals.

Let R be a ring and 3 a derivation of R. Then 3 is called nil if for any x g R there

is a positive integer n = n(x) such that d"x = 0 (see [2]). Here, if the number n can

be taken independently of x, 3 is called nilpotent. Assume that R is a prime ring and

7.is a nonzero ideal of R. Chung and Luh [3] proved that if 3 is nilpotent on 7, then

it is nilpotent also on R. Nil derivations are important because they are related to

automorphisms of the ring via the exponential mapping [2]. The purpose of this

paper is to answer the following

Question (*). Let 3 be a derivation on a prime ring P. If 3 is nil on a nonzero ideal

7 of R, is it nil on the whole ring P?

The answer is negative, as will be shown in §1. We shall give three counterexam-

ples of independent interest. In §2 we show that the answer is positive under some

additional conditions, especially under certain chain conditions.

We would like to express our thanks to Professor J. Luh and the referee for many

valuable suggestions. For instance, Example 2 in §1 was suggested by the referee.

1. Examples. Throughout this section p is a prime number. For a subset A of a

ring R with 1, A*"1 denotes the set of inverses of all invertible elements of A.

Lemma 1. Let R be a ring with 1 of characteristic p and X a subset of R. If a

derivation 3 of R is nilpotent (resp. nil) on X, then it is nilpotent (resp. nil) on the

subring of R generated by X U A"1.

Proof. Let a, b, c g R and suppose ab = c. Then for any positive integer n, we

have

(dp"a)b + adp"b = dp"c.

So, if dp"a = dp"b = 0, then dp"c = 0; and if dp"b = dp"c = 0 and b is invertible,

then 3 p"a = 0. From this observation the assertion of the lemma follows.
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If we only consider the subring generated by X in Lemma 1, the existence of 1 in

R is not necessary. The lemma enables us to construct a derivation on a field of

positive characteristic, which is nil but not nilpotent.

Example 1. Let AT be a field of positive characteristic. On the (commutative)

polynomial ring K[xx, x2,... ] over K in a countable number of variables, define a

derivation 3' over K by 8'x, = xi_l for i > 2 and d'x^ = 0. 3' can be extended

uniquely to a derivation 3 of the quotient field K(xx, x2,...). Then 3 is nil by

Lemma 1 but not nilpotent.

The reason why we need an infinite number of variables in Example 1 can be

explained by the following proposition. By a right quotient ring of R we mean a ring

5 with 1 containing P as it subring such that any element x G S is written x = ab'1

for some a, b g P with b invertible in S.

Proposition 1. Let R be a finitely generated algebra over a commutative ring K of

characteristic p. Then a nil derivation of any right quotient ring S of R over K is

nilpo'tent.

Proof. Let R be generated by a finite set A. A nil derivation 3 of S over K is

nilpotent on X U K. So it is nilpotent on R and, consequently, nilpotent on S by

Lemma 1.

A derivation 3 of R is called locally nilpotent if for any a G R there is a subring S

of R such that a g S, 35 ç S, and 3 is nilpotent on S.

Proposition 2. Let R be a ring of characteristic p. Then a nil derivation of R is

locally nilpotent.

Proof. Let 3 be a nil derivation of R and let x g P. Then 3"jc = 0 for some

positive integer n. Let S be the subring generated by {x, dx,...,d"~lx}. Then

dS ç S and 3 is nilpotent on S by Lemma 1.

In Propositions 1 and 2 the positivity of the characteristic is essential. In fact, let

R = K[x] be the polynomial ring over a field K of characteristic 0, and let 3 be the

ordinary derivation given by d"x = nx"^1. Then 3 is nil but not locally nilpotent.

The following example answers Question ( * ) in the negative in the case of positive

characteristic.

Example 2. Let F = K(xu x2,...) be the field and 3 the derivation of F given in

Example 1. Let P be the ring of countable by countable, row by column finite

matrices over F. Then R is a prime ring with the unique proper ideal 7 consisting of

matrices with only finitely many nonzero entries. Define a derivation 3 of R by

dA = [8a,--] for a matrix A = a¡¡ in P. Then 8 is nil on the ideal 7 but not nil on the

whole ring R.

The following proposition shows that the construction in Example 2 does not

work in the case of characteristic 0.

Proposition 3. A division ring D of characteristic 0 has no nonzero nil derivation.

Proof. Suppose D has a nonzero nil derivation 3. Then there is a in D such that

8a =£ 0 and 82a = 0. Let b be the inverse of a; then d"~lb ¥= 0 and d"b = 0 for some



NIL DERIVATIONS AND CHAIN CONDITIONS 203

positive integer n. We have 0 = 8"(1) = 8"(aZ>) = n(da)d"~1b, but this is a con-

tradiction.

The following example covers the case of characteristic 0.

Example 3. Let A' be a field of characteristic 0, and let 5 = K(x, y, z) be the

polynomial ring in three noncommuting variables x, y, and z over K. For a

monomial M in S, deg^ M and degv,M denote the degree of M with respect to x and

y, respectively. Let 7 be the ideal of 5 generated by the monomials of the forms Mz

and zM, where M ranges over all the monomials in x and y such that degx M >

degv M. Define a derivation 8 of S over K by dx = x2, dy = 1, and 8z = 0. Since

37 ç. 7, 3 induces a derivation 8 of the factor ring P = 5/7. Then P is a prime ring

and 3 is nil on the ideal RzR but not nil on R, where z is the residue class of z

modulo 7.

The algebra R in Example 3 is finitely generated. In view of Proposition 1, it

seems difficult to construct such an example in the case of a positive characteristic.

The following example works for arbitrary characteristic.

Example 4. Let A' be a field and P the ring of countable by countable, row by

column finite matrices over K. Let A be a matrix in P formally written in the

following way:

OO 00

A= E4' + l)- I>(z'2,/2 + l),
(=1 /=1

where e(i, i + 1) is the matrix with 1 in the (/', / + l)th place and 0 elsewhere. Then

the inner derivation ad^ induced by A is nil, not on R, but on the unique proper

ideal consisting of matrices with only finitely many nonzero entries.

2. Chain conditions. The rings given in Examples 2-4 do not satisfy the ascending

(descending) chain condition on one-sided ideals. In this section we give some

positive results on Question ( * ) under certain conditions.

Theorem 1. Let R be a ring, I a right ideal of R, and 3 a derivation of R. 7/8 is nil

on I, then for any a G 7 and x g R there is a positive integer TV = N(a, x) such that

ad"x = 0 for all n > TV.

Proof. If we let / = L^Lod'I, then J is a right ideal of P such that 7 c/, 3.7 |J,

and 3 is nil on J. So we may assume from the beginning that 87 c 7. We prove the

assertion by induction on the nilpotency m of 3 on a, that is 3ma = 0, but

3"'_1a =*= 0. If m = 0, then a = 0 and there is nothing to prove. Let m > 0. Since d'a

is in 7 and its nilpotency is smaller than that of a for i: = 1,... ,m - 1, the induction

hypothesis assures us that there is a positive integer TVj = Nx(a, x) such that

(d'a)d"x = 0 for i: = 1,... ,m - 1 and n > TV,. Since ax G 7, we see dN2(ax) = 0 for

some positive integer TV2 = N2(a, x). Therefore, if n ^ max{TV2, TVj + m - 1}, then

0=3"(«x) = E(")(3'a)8"-'x = a3"x.
i-O

This completes the proof.
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Corollary. Let I be a right ideal of R containing at least one right regular element.

Then a derivation of R which is nil on I is nil on R.

Theorem 2. Let I be a nonzero right ideal of a prime ring R which satisfies the

ascending chain condition (ACC) on left annihilator ideals. Then a derivation of R

which is nil on I is nil on R.

Proof. Let 3 be a derivation of P which is nil on 7. Let x g R and let « be a

nonnegative integer. Define

I„(x)= {a g P|a8'x = 0 for all i > n).

Then we have an ascending chain {In(x)}n^0 , 2 of left annihilator ideals of P. By

assumption there is a positive integer TV such that IN(x) = IN+1(x) = •■•. By

Theorem 1 we find that

00

I r-    I   I   r  t     \ J    Í     \
I  ^    U   In[X)  =  IN(X).

„--o

This means 78^ = 0, and, consequently, dNx = 0 because P is prime.

Corollary 2. Let R be a prime right (left) Goldie ring. If a derivation 8 of R is nil

on a nonzero right ideal of R, then 8 is nil on R.

Proof. Since, in either case, R satisfies the ACC on left annihilators [1, 1.15], the

conclusion follows from Theorem 2.

Theorem 2 is not true at all if we replace "prime" by "semiprime". In fact, let P,

and R2 be prime rings and 8[ a nonnil derivation of Rv The derivation 8 of

R = P, © R2, defined by d(xx + x2) = dxx, x¡ g P,, is nil, not on P, but (actually

zero) on the ideal P2. So the conditions in the next theorem may be reasonable.

Theorem 3. Let R be a ring with the ACC on left annihilator ideals. Let I be a right

ideal of R containing the prime radical of P. 7/a derivation 3 of R is nil on I, then it is

nil on the ideal I generated by I. If, moreover, I is essential in R as a left ideal, then 3

is nil on R.

Proof. We may assume 87 <z I. Then 37 ç 7. The prime radical P of P is an

intersection of prime ideals Pa of P. Let ie/; then by the proof of Theorem 2,

78"x = 0 for some positive integer n. If 7 <£ Pa, then d"x g Pa. On the other hand, if

7 ç Pa, then d"x g 7 c Pa. It follows that d"x g P. Since 3 is nil on P by

assumption, it is nilpotent on x.

Now let x be an arbitrary element in P. Since 78"x = 0, 73 "x = 0 holds. So, if 7 is

an essential left ideal, then dnx is in the left singular ideal Z of P. Since Z is a

nilpotent ideal by [1,1.6], we find that d"x g Z ç P ç 7. Thus, 3 is nilpotent on x.

In Theorems 2 and 3 the ACC on left annihilator ideals is indispensable. It cannot

be replaced even by the ACC on right annihilator ideals, as the following example

shows.

Example 5. Let A" be a field of arbitrary characteristic. Let P be the factor ring of

the polynomial ring K(xx, yx, x2, y2,... ) over A" in a countable number of noncom-

muting variables xx, yx, x2, y2,...  modulo the ideal 7 generated by all x¡y, and
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yty- — y-yi such that /' < j. Define a derivation 8 of P over K by dx¡ = xj_1 for /' > 2,

dxx = 0, and dyj = yj+l for y > 1 modulo 7. Then P is a prime ring with the ACC on

right annihilator ideals, 3 is nil on the right ideal E^Jc^P, but it is not nil on every

nonzero left ideal. In fact, for any nonzero element z in P, 8 is not nilpotent on J'<,!.

Finally, the following example shows that, in Theorem 3, the condition that 7

contain the prime radical of P is also necessary.

Example 6. Let A" be a field and let

P \a, b,c, d G k

Then P is an Artinian ring whose prime radical is

K
0
0

The derivation 8 defined by

is zero on the right ideal

of P but not nil on the ideal

K
0
0

K
0
0

K

0
0

0
0
K

K

0
K

generated by 7, and 7 is an essential left ideal of P.

Note added in proof. Related and interesting results were also obtained

independently by Y. Hirano and H. Yamakawa in a paper On nil and nilpotent

derivation to appear in Math. J. Okayama Univ.
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