A GROUP-THEORETIC CHARACTERIZATION OF M-GROUPS ## ALAN E. PARKS ABSTRACT. Groups having the property that all their complex irreducible characters are monomial are characterized in terms of the embedding of cyclic sections of the group. **Introduction.** A character of a finite group G is *monomial* if it is induced from a linear (degree-one) character of a subgroup of G. The group G is an M-group if all of its complex irreducible characters (the set Irr(G)) are monomial. Isaacs [5, and 4, p. 67] and Berger [1, p. 43] have asked for a purely group-theoretic characterization of M-groups. We will now describe such a characterization; proofs will be provided in §1. If $M \triangleleft H \subseteq G$ with H/M cyclic, we will say that (H, M) is a pair. For $g \in G$ and $H \subseteq G$ we define $F_H(g)$ to be the set of commutators $[g, H \cap H^{g^{-1}}]$. We note that $F_H(g) \subseteq H$: indeed if $h \in H \cap H^{g^{-1}}$, then $h = gkg^{-1}$ for some $k \in H$. Then $[g, h] = g^{-1}h^{-1}gh = k^{-1}h \in H$. If (H, M) is a pair, we will say that it is a good pair in G, if $F_H(g) \not\subseteq M$ for all $g \in G - H$. If (H, M) and (K, L) are good pairs, we will say they are related in G if there is $g \in G$ such that $H^g \cap L = K \cap M^g$. Let S_G be the equivalence relation on good pairs in G generated by the relation of being related. Let m_G be the number of distinct classes of S_G . We identify a relation on the elements of G. We say $x \sim y$ for $x, y \in G$ provided the two cyclic groups $\langle x \rangle$ and $\langle y \rangle$ are conjugate in G. Clearly \sim is an equivalence relation. (The equivalence classes of \sim are sometimes called the *rational conjugacy classes of G*.) Let n_G be the number of \sim equivalence classes. THEOREM. We have $m_G \leq n_G$ with equality if and only if G is an M-group. The Theorem is the promised characterization. We would like to thank T. R. Berger for pointing out an error in an earlier version of this paper. 1. Proofs. Let J and L be subgroups of a group G. A set of representatives T for the double cosets of J and L in G will be called a J, L transversal in G. For a character θ of J and $x \in G$ we define a character θ^x of J^x by the formula $$\theta^{x}(g) = \theta(xgx^{-1})$$ for $g \in J^{x}$. The following appears as V.16.9 of [3]. Received by the editors February 16, 1984 and, in revised form, August 25, 1984. 1980 Mathematics Subject Classification. Primary 20B10. 210 A. E. PARKS 1.0 THEOREM (MACKEY). Let $J, L \subseteq G$. Let T be a J, L transversal in G. Let θ and φ be characters of J and L, respectively. Then $$\left[\theta^{G}, \varphi^{G}\right] = \sum_{g \in T} \left[(\theta^{g})_{J^{g} \cap L}, \varphi_{J^{g} \cap L} \right]. \qquad \Box$$ For any pair (H, M), there is a linear $\lambda \in Irr(H)$ with M equal to the kernel of any representation affording λ (we write $M = \ker(\lambda)$). We will say that λ proceeds from (H, M). 1.1 PROPOSITION. Let (H, M) be a pair with $H \subseteq G$. Let λ proceed from (H, M). Then (H, M) is a good pair in G if and only if the induced character λ^G is irreducible. PROOF. Let λ proceed from (H, M). CLAIM. If $x \in G$ then $[(\lambda^x)_{H^x \cap H}, \lambda_{H^x \cap H}] = 1$ if and only if $F_H(x^{-1}) \subseteq M$. PROOF. Put $K = H^x \cap H$. Then λ_K and $(\lambda^x)_K$ are linear characters of K. Hence $[(\lambda^x)_K, \lambda_K] = 1$ if and only if $(\lambda^x)_K = \lambda_K$. Let $g \in K$ and suppose $(\lambda^x)_K = \lambda_K$. Then $\lambda^x(g) = \lambda(g)$, so then $\lambda(xgx^{-1}) = \lambda(g)$. Since λ is linear, this proves that $\lambda(xgx^{-1}g^{-1}) = 1$, and so $[x^{-1}, g^{-1}] \in \ker(\lambda) = M$. Thus $F_H(x^{-1}) = [x^{-1}, K] \subseteq M$. Conversely, if $F_H(x^{-1}) \subseteq M$, then $\lambda(xgx^{-1}) = \lambda(g)$ for all $g \in K$. Then $(\lambda^x)_K = \lambda_K$, as needed. \square Now $\lambda^G \in Irr(G)$ iff $[\lambda^G, \lambda^G] = 1$. Let λ^G be irreducible and choose $x \in G - H$. Then there is an H, H transversal T in G with $1, x \in T$. By Theorem 1.0 $$[\lambda^G, \lambda^G] \geqslant [\lambda_H, \lambda_H] + [(\lambda^x)_{H^x \cap H}, \lambda_{H^x \cap H}].$$ So then $[(\lambda^x)_{H^x \cap H}, \lambda_{H^x \cap H}] = 0$. By the Claim, $F_H(x) \not\subseteq M$. This proves one direction of Proposition 1.1. Suppose for all $x \in G - H$ that $F_H(x) \nsubseteq M$. By the Claim, $[(\lambda^x)_{H^x \cap H}, \lambda_{H^x \cap H}] = 0$ for all $x \in G - H$. Then using Theorem 1.0 we see that $[\lambda^G, \lambda^G] = [\lambda_H, \lambda_H] = 1$. This completes the proof of Proposition 1.1. \square 1.2 PROPOSITION. If (H, M) and (K, L) are good pairs, then they are related if and only if there are characters λ and μ proceeding from (H, M) and (K, L), respectively, such that $\lambda^G = \mu^G$. PROOF. Assume λ and μ proceed from the good pairs (H, M) and (K, L), respectively, and suppose that $\lambda^G = \mu^G$. Let T be an H, K transversal in G. By Theorem 1.0, since $[\lambda^G, \mu^G] \neq 0$, we have $$\left[\lambda_{H^x \cap K}^x, \mu_{H^x \cap K}\right] \neq 0$$ for some $x \in T$. Now $(\lambda^x)_{H^x \cap K}$ and $\mu_{H^x \cap K}$ are linear and we conclude that $(\lambda^x)_{H^x \cap K} = \mu_{H^x \cap K}$. In particular, their kernels are the same, that is $$M^x \cap H^x \cap K = L \cap H^x \cap K$$. This is clearly $M^x \cap K = L \cap H^x$. Hence (H, M) and (K, L) are related. Conversely, assume $H^x \cap L = K \cap M^x$ for some $x \in G$. Then $L \cap H^x \cap K = H^x \cap K \cap M^x$; call this group N. Now $(H^x \cap K)/N$ is isomorphic to a subgroup of K/L which is cyclic. Thus there is a faithful linear $\nu \in \operatorname{Irr}((H^x \cap K)/N)$. Since $N = (H^x \cap K) \cap L$, ν extends to $\mu \in \operatorname{Irr}(K)$ with $L = \ker(\mu)$, and since $N = (H^x \cap K) \cap M^x$, ν extends to $\lambda^x \in \operatorname{Irr}(H^x)$, where $\lambda \in \operatorname{Irr}(H)$ and $M = \ker(\lambda)$. Including x in an H, K transversal in G, Theorem 1.0. shows that $$\left[\lambda^{G},\mu^{G}\right]\geqslant\left[\left(\lambda^{x}\right)_{H^{x}\cap K},\mu_{H^{x}\cap K}\right]=\left[\nu,\nu\right]=1.$$ Because (H, M) and (K, L) are good pairs, λ^G and μ^G are irreducible. Thus $\lambda^G = \mu^G$ as needed. \square We remark that Proposition 1.2 shows that being related is actually an equivalence relation on the set of good pairs, and so the equivalence classes of S_G are precisely the classes of related good pairs. It might be interesting to find a purely group-theoretic proof that being related is an equivalence relation. The proof of the Theorem is close at hand. We say χ , $\psi \in Irr(G)$ are Galois conjugate if there is $\sigma \in Aut(\mathbb{C})$ such that $\chi^{\sigma} = \psi$. If $s(\chi)$ is the Schur index of χ over the rationals (see [4, Chapter 10]), then $s(\chi)$ times the sum $sp(\chi)$ of the distinct Galois conjugates of χ in Irr(G) is the character afforded by an irreducible, rational representation of G. By [4, Theorem 9.21], all irreducible, rationally-afforded characters of G arise as $s(\chi) sp(\chi)$ for $\chi \in Irr(G)$. By the Berman-Witt Theorem [2, 42.9], the number n_G defined in the Introduction is the same as the number of distinct, irreducible, rationally-afforded characters of G, and thus n_G is the number of Galois conjugacy classes of Irr(G). **PROOF OF THEOREM.** By the preceding discussion, it suffices to show that there is a one-to-one correspondence between the set of Galois conjugacy classes of monomial elements of Irr(G) and classes of related good pairs. Let (H_i, M_i) , $1 \le i \le m_G$, be a set of representatives of the clases of related good pairs in G. For each i, let λ_i proceed from (H_i, M_i) ; then $\lambda_i^G \in Irr(G)$ by Proposition 1.1. To complete the proof, we will show that, given monomial $\chi \in Irr(G)$, there is a unique i for which χ is Galois conjugate to λ_i^G . Indeed, suppose $\chi = \mu^G$ where $\mu \in Irr(H)$, $H \subseteq G$, and $\mu(1) = 1$. Put $M = \ker(\mu)$; then by Proposition 1.1, (H, M) is a good pair from which μ proceeds. Now (H, M) is related to some (H_i, M_i) and Proposition 1.2 grants μ' proceeding from (H, M) and λ' proceeding from (H_i, M_i) with $$\left(\mu'\right)^{G} = \left(\lambda'\right)^{G}.$$ The characters μ' and μ faithfully represent the same cyclic group. By the irreducibility of the cyclotomic polynomials there is $\sigma \in \operatorname{Aut}(\mathbb{C})$ such that $\mu^{\sigma} = \mu'$. Similarly there is $\tau \in \operatorname{Aut}(\mathbb{C})$ with $(\lambda')^{\tau} = \lambda_{j}$. Compute $$\chi^{\sigma\tau} = ((\mu^{\sigma})^G)^{\tau} = ((\mu')^G)^{\tau}$$ $$= ((\lambda')^G)^{\tau} \quad \text{using } (*)$$ $$= ((\lambda')^{\tau})^G = \lambda_i^G.$$ Thus χ is Galois conjugate to λ_i^G . 212 A. E. PARKS As for the uniqueness of i, if χ is also conjugate to λ_j^G , then there is $\sigma \in \operatorname{Aut}(\mathbb{C})$ with $(\lambda_i^G)^{\sigma} = \lambda_j^G$. Thus $(\lambda_i^\sigma)^G = \lambda_j^G$. Observe that λ_i^σ proceeds from (H_i, M_i) , and then Proposition 1.2 allows us to conclude that (H_i, M_i) and (H_j, M_j) are related. This forces that i = j. The proof is complete. \square ## REFERENCES - 1. T. Berger, Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R. I. 1980. - 2. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962. - 3. B. Huppert, Endliche Gruppen. I, Springer-Verlag, Berlin, 1967. - 4. I. M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976. - 5. _____, Primitive characters, normal subgroups, and M-groups, Math. Z. 177 (1981), 267-284. DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48824 Current address: Department of Mathematics, Ohio University, Athens, Ohio 45701