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COMPLEX POWERS OF THE LAPLACE OPERATOR

ON THE CIRCLE

JACK MORA VA

Abstract. The classical zeta function of Lerch has an analytic continuation as a

distribution on the circle which seems to be very different from its usual analytic

continuation; for example, the Bernoulli polynomials come out upside down.

In this note functions on the circle T = R/Z are identified with periodic distribu-

tions on the line, and L2(T, C) = L2(T, C)/C is the reduced Lebesgue space of

nonconstant square-integrable periodic functions. This Hilbert space has the well-

known basis

e(nx) = e2"'"*,       n € Z -{0}, x e [0,1].

The complex powers of the Laplace operator [10] define an analytic group (-A)~s of

operators on ¿2(T, C), and if a = re s is sufficiently large, the prescription

(-A)~s/2e(nx) = n~se(nx) leads to the integral representation

(-Ar/2t>(x) = fKs(x,y)Hy)dy

for these complex powers by the kernel

K5(x, y) =  Y. n~se(nx)e(-ny).

n*0

Note that

Ks(x, y) = l(s,x - y) + l(s, y - x),

where

ï(s, x) =  £ e(nx)n~
n>\

is a quite classical function. (See [14, §9.7, Example 2]; in particular, if x € Z, then it

has an analytic continuation, and—sinceforx ¥= 0,(d/dx)(s, x) = 2iriï(s — 1, x)—it

is smooth away from the origin.) Now by Schwartz's kernel theorem [9] there is an

analytic function of s, taking values in the distribution on F X F which are smooth

away from the diagonal, representing (-A)~s/2 for all s in C. In particular, we can

think of Ks as taking values in the distributions on the line smooth away from the

origin. The result in this paper is a formula for this kernel modulo functions smooth

at the origin.
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Proposition. In some neighborhood of '0 in T,

l(s,x) = T(l-s)(-2<n-ix + 0y-1

in the group of distribution-valued meromorphic functions of s, modulo smooth-valued

meromorphic functions of s.

This congruence requires some explanation, for the left side of the equation

(defined on T) is holomorphic, while the right side (defined on R) has simple poles at

the positive integers; but the residues at the poles turn out to be smooth. Otherwise,

the Proposition is a straightforward consequence of a functional equation for a

closely related function derived in 1887 by M. Lerch [5] which identifies I in terms of

the Hurwitz zeta function

Í(s,*y±  T,(n + a)-'.
n»0

Note that

-r(l - s)6s~x = (s - 1)    + (y + logo) + positive powers of (s - l)

(cf. [2, I, §4.5]) where y is Euler's constant. Note also that, as x -* 0, l(s, x) -* Ç(s),

for a > 1, but l(s, x) -» +00 when a < 1; thus, to get the 'genuine' zeta function for

res ^ 1, it is necessary to add infinite counterterms, as in the Proposition. This is by

now a hallowed procedure in physics (cf. [8, III, §5 and IV, §5.1]). Hence,

l(s,x) - T(l - s)(-2<nix + O)^1 -> f(j)asx -» 0    for allí.

Corollary. 1(1, x) = -Log(-2w;'x) modulo smooth functions vanishing at 0.

Similarly, l(s) represents a Hilbert-Schmidt operator on ¿2(T, C) precisely when

l(s) is in L2(T,C)—in particular, if a > 1/2.

Besides Lerch's equation we need to recall a few facts about the Feynman power

(x — iOy from [2,1, §3.6]: this is an entire distribution-valued function of s, equal to

the distribution limit as e -» +0 of the functions (x - ie)s or to the sum x5+ +

e(-Ti)Jci, where the (meromorphic, distribution-valued) functions xs± are as in

Gel'fand-Silov, or to the operation defined on test functions/G Ct°° by

j (x - iO)'f(x) dx = j zsF(z) dz,

where L is a contour running along the real axis from left to right, avoiding the

origin by a small bump into the lower half-plane, and F is an analytic extension of/

to some small neighborhood of L; Cauchy's theorem guarantees this operation to be

well defined.

Now Lerch writes

m(a,x,s)=  T e(nx)(n + a)~s,
«¡sO
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with a g (0,1] and a > 1, and shows that an analytic continuation exists if x * 0 (or

1), verifying the functional equation

m(a,x,l - s) = {2irysT{s)[m{x,-a, s)e(\s - ax)

+ 9i(l - x,a,s)e(-js + a(l - x))].

See [1] for two proofs, or [11,1, §5] for another, or [15, VII, §8] for a fourth.

Now ï(s, x) = e(x)9i(l, x, s), while

SR(x,-l, s) = ${s, x)   and   5ft(l - jc,1, j) = £ (n ~ x) *>
n>l

so for a sufficiently large we have

1(1 -s,x)" (2jr)~sT(s)e{\s)[x-s + e(-js)(l - x)~5] + terms smooth at 0.

If/ g C°° is supported in a small neighborhood of 0, then for sufficiently negative a,

f [x-J + e(-|i)(l-xr f(x)dx = f + 1 (x;*+e(-|i)xi)/(x)dx,

since/is periodic; but then the equality must be true for all s, and

t(l - i, x) - e(ii)(2«r)-,r(j)(* - íO)"

is smooth for large a, hence for all s. This kind of functional equation is explained

nicely by the Kubert-Lang theory of distributions (cf. [3, 4, 7]), these being functions

on (for example) R/Z with values in an abelian group, satisfying (for any positive

integer N ) the relation

Nk     £     <t>(x + Ñ-lj) = <t>(Nx);

n-l>_/>0

here k is the degree of the distribution <;>. Thus (x - i0)s~l satisfies the distribution

identity of degree 1 - s, in the group of germs of generalized functions at 0 on the

real line, modulo germs of smooth functions; similarly log* is a distribution of

degree 0, taking values in such a group of asymptotic expansions near 0 (cf. [6,

Lemma 6]). The author suggests the term 'retribution' for distribution-valued

distributions.

The formula above is a little more familiar when expressed in terms of the Fourier

transform: it is easier to think of I as taking its values in the algebra of functions on

F under pointwise multiplication than in the convolution algebra. In particular, the

transform of T(i)(x - iQ)~s is the distribution-valued meromorphic function

2ire(\s)xs+~l; in the operational calculus in which f(x)g(-id) is the operator

<K 41 ~~* ffàigipY. the caret denoting Fourier transform, we have

1(1 - s) = e(\(l - s))W-\-id_y-\

which is to say that t(s) is roughly the -sth power of ((-1/2ttz')3)_. This suggests

that the above Proposition could be reformulated as another

Corollary. (-A)js/2 - (-A)j,î/2 = Ç(s) modulo smooth functions vanishing at 0.

Our cousins, the physicists, might paraphrase this formula by saying that the zeta

function at zero, which is something like a zero-point energy, can be calculated by
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analytical renormalization (i.e., by detaching the polar terms from its Laurent

expansion; cf. [13, I, §3E]) to be equal to Euler's constant; but perhaps the question

of whether or not Euler's constant is physical can be left to Euler.

This paper began in conversation with Jim McClure about the holomorphic

divided power operations s «-» ysx + = T(l + s)~1xs+; in these terms a third reformu-

lation of the Proposition is the

Corollary. l(s, x) = wcsc tts ys_x(-2trix + 0).

I would like to thank him, as well as Dinakar Ramakrishnan, and especially

Takashi Ono, for help with these questions and many others along the way. The

assertions about physics above may not be very satisfying to physicists, but I would

like to thank David Brydges and I. M. Singer for their time. Barry Simon, in helpful

correspondence, points out that if s = a + it, with a strictly between zero and one,

then l(s) lies in the weak trace ideal Ja-\-v/ (cf. [12, I, viii]). Its Calderón norm is easy

to calculate; we state it as a final

Corollary. ||I(j)||„-iiM, = (1 - a)"1 if s = a + it, a g (0,1).
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