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THE HOMOTOPY TYPE OF HYPERPLANE POSETS

PAUL H. EDELMAN1 AND JAMES W. WALKER2

ABSTRACT. Previously, Edelman had defined a partial order on the regions

of a euclidean space dissected by hyperplanes. The goal of this paper is to

compute the homotopy type of open intervals in these posets. Techniques

from the theory of shellable posets are used.

0. Introduction. The goal of this paper is to compute the homotopy type of

intervals in the hyperplane posets defined in [Ed]. This generalizes [Ed, Theorem

2.5], and certain results of Björner for weak orderings of Coxeter groups [Bj2,

Theorem 6]. (See also [Ed, §IV].) In order to accomplish this we prove in §1 a fact

about the homotopy type of certain filters in CL-shellable posets that triangulate

spheres. We assume that the reader is familiar with the work of Björner and

Wachs [BW] on CL-shellable posets and the equivalent notion of recursive atom

orderings.

Associated with any poset P is the simplicial complex of chains of P, called the

order complex of P. Throughout this paper, we will abuse language by referring to

P having certain topological properties when we actually mean the order complex

of P. In particular, this applies to the title of our paper.

1. A topological theorem. In this section we prove a theorem about the

homotopy type of a certain kind of order filter (up-set) in a CL-shellable poset that

triangulates a sphere. This theorem will be applied in §2 to hyperplane posets. For

the definitions and notation of CL-shellable posets and recursive atom orderings,

we refer the reader to [BW]. A more basic reference for shellability is [Bjl].

If P is a poset, let P denote the new poset formed by adjoining a new least

element 0 and a new greatest element 1. If z G P, define P>z — {x 6 P: x > z).

For x, y in P, let [x,y] be the closed interval {z & P: x < z < y} and let {x,y) be

the open interval [x,y] — {x,y}.

We begin with two lemmas.

LEMMA 1.1. Suppose that P admits a recursive coatom ordering a{, ei2,..., at

and z is a noncoatom of P. Let au, a¿2,..., o¿t, i\ < ¿2 < • * • < ú, be the coatoms

of [z, 1].  Then o^, a¿2,..., a¿t is a recursive coatom ordering of [z, 1].

PROOF. By the equivalence of recursive atom orderings and CL-labellings [BW,

Theorem 3.2], it is equivalent to show that a dual CL-labelling of P restricts to a

Received by the editors August 10, 1984. The results were presented at the 91st annual

meeting of the American Mathematical Society on January 13, 1985, as part of a special session

on algebraic combinatorics.

1980 Mathematics Subject Classification. Primary 06A10, 51M20; Secondary 52A25, 55P10,

57Q99.
Key words and phrases. Dissection by hyperplanes, shellability, homotopy type, Möbius function.

1 Supported in part by NSF grant MCS-8301089.
Supported in part by NSF grant ISP-8011451.

©1985 American Mathematical Society

0002-9939/85 $1.00 + $.25 per page



222 P. H. EDELMAN AND J. W. WALKER

dual CL-labelling of [2,1].   But that is a trivial consequence of the definition of

CL-labelling.    D

The next lemma could be avoided, but we think it is of independent interest. It

implies a result of Provan [Pr, Theorem 5.4.8] which he proved using techniques

from PL topology.

LEMMA 1.2. Suppose that P is a poset that triangulates a sphere. If 01,02,

... ,at is a recursive coatom ordering of P, then so is the reverse ordering at,at-i,

..., Ol.

PROOF. Let us dualize the problem, so that we can speak of recursive atom

orderings rather than recursive coatom orderings. By [BW, Theorem 3.2], a recur-

sive atom ordering of P can be used to construct a CL-labelling of P. In fact, the

proof constructs an integer CL-labelling A in which no two consecutive labels on the

chains are equal. In each rooted interval [x, y]r, the number of unrefinable chains

with decreasing labels is the absolute value of the Möbius function p(x,y), by a

formula of Stanley [Bjl, Theorem 2.7]. But since P triangulates a shellable sphere,

the open interval {x,y) also triangulates a sphere so p(x,y) = ±1. Therefore each

rooted interval has a unique unrefinable chain with decreasing labels.

Moreover, the unique decreasing chain is lexicographically last among all the

chains in the rooted interval. We can prove that by induction on the length of the

rooted interval, as follows. Let C = 0 ^ xi ^ x2 —>■••—> 1 be the lexicograph-

ically last chain in [0,1]. Then x\ —► x2 —► • • • —» 1 is the lexicographically last

chain in \x\, 1] and hence by induction is decreasing. Since P is a sphere, there is

exactly one element z other than x\ in (0,x2). Since C is lexicographically last,

A(C,0, z) < A(C,0,xi). Applying the definition of CL-labelling to [0, x2], it follows

that A(C,0,£1) > A(C,xi,X2). Therefore C is decreasing, as desired.

Let A' be a new chain labelling defined by A'(C, x, y) — — X(C, x, y). Then A' has

a unique increasing chain in each rooted interval, and this chain is lexicographi-

cally first among all unrefinable chains in the interval. This reversed CL-labelling

corresponds to the reverse of the original recursive atom ordering.    D

We can now prove the main theorem of this section.

THEOREM 1.3. Let P be a poset which triangulates a sphere, and let 01,02,

...,at be a recursive coatom ordering of P. Let Q be the order ideal (down-set)

generated by ai,02,...,a^, where 1 < k < t — 1.   Then the order filter R = P — Q

is contractible.

PROOF. We proceed by induction on the length of P. The theorem is easily

seen to be true if P has length 1 or 0.

Let S be the ideal generated by the maximal elements of R. That is, S is

generated by Ofe+i,...,Ot. By Lemma 1.2, ot,at_i,... ,ai is a recursive coatom

ordering of P. Since at, at-\,..., Ofc+i is a proper initial segment of that ordering,

S is a shellable triangulation of a ball. In particular, S is contractible.

Consider the inclusion map j: R —> S. If we can show that j induces a homotopy

equivalence, then R will be contractible as desired. By a theorem of Quillen [Qu, p.

103] (see also [Wa, Theorem 2.2]), j induces a homotopy equivalence if the fibers

j~1{S>x) — R n S>x = R n P>x are contractible for each x in S. See Figure 1.
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FIGURE 1

If x G R, then R n S>x = R>x is contractible since it has a least element. So

assume x G S — R. Then R n P>x = P>x — Q H P>x, and Q n P>x is nonempty.

By Lemma 1.1, the recursive coatom ordering of P restricts to a recursive coatom

ordering of [x, 1], and Q n P>x is an ideal generated by an initial segment of that

ordering. Therefore, by inductive hypothesis 72 D P>x is contractible. Thus we can

apply Quillen's theorem and complete the proof as planned.    D

2. The homotopy type of hyperplane posets. In this section we apply

our Theorem 1.3 to determine the homotopy type of a class of posets related to

dissections of Rn by hyperplanes. These posets were first defined in [Ed], and we

will use the notation and terminology thereof. We begin by briefly reviewing the

definitions.

Let M = {H\,H2,..., Tifc} be a set of hyperplanes in R™ whose normal vectors

span Rn. Then Rn — U¿=i Hi 1S divided into a set Z of open convex n-cells called

regions.

Let B be a fixed region. For any region R consider the set 5(7?) defined by

5(7?) = {Hi G M: Hi separates 7? from B}. The (injective) function 5 partially

orders Z by i?! < 7?2 if and only if 5(7?i) Ç 5(7?2). Let P{X, B) be the set Z with
this partial ordering.

The topological closure 5 of 5 is a convex polytope. The set B of boundary

hyperplanes of B is defined by S = {Hg M: H D B is of dimension n - 1}. Each

hyperplane 77 in S defines a facet of B, F'H, by F'H — H n B. The set of facets of

B is denoted J'. A face of B is any intersection of facets of B. Let J be the set

of faces of B, other than 0 or B, partially ordered by inclusion. (Excluding B and

0 is a variation from the notation of [Ed].) If B is bounded, then the boundary of

B is a sphere of dimension n — 1, and J triangulates that sphere. From [BM and

BW, Theorem 4.3] we know that 7 admits a recursive coatom ordering.

LEMMA 2.1. If F G J then there exists a unique region R(F) such that

S{R{F)) = H{F) where X{F) = {HgM:HD F}.

PROOF. See [Ed, Lemma 1.2].    D

A region of the form 7?(F) for F in J is called a facial region.
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THEOREM 2.2. If RG P(H, B) and R has rank at least 2, then the open interval

(B, R) is contractible if 7? is not a facial region, and has the homotopy type of a

sphere of dimension n — 2 — k if R — R(F) and F is a face of dimension k.

PROOF. The proof is by induction on the rank of 7?. One can check the result

directly if the rank of 7? is 2. Without loss of generality we can assume that B is

bounded, as was argued in [Ed, Lemma 1.12].

Let {B,R)+ be the subposet of (B,R) defined by {B,R)+ = {R':B < R' <
R and 7?' is facial}. Let j:(B,R)+ —► (5,7?) be the inclusion map. The fiber

j~1((B, R)<r>) is contractible because of a greatest element if 7?' is facial, and is

contractible by inductive hypothesis if 7?' is not facial. Hence by Quillen's theorem

[Qu, p. 103] j is a homotopy equivalence, so it suffices to determine the homotopy

type of (B, R)+. We consider two cases.

If 7? is a facial region and 7? = 7?(F) where F is of dimension k, then by [Ed,

Lemma 1.3] we have that (73,7?)+ is dually isomorphic to the interval [F, 1) in 7.

And (F, 1) triangulates a sphere of dimension n — 2 — k, since 7 triangulates a

sphere of dimension n — 1.

Now suppose that 7? is not a facial region. Let T = 5(7?) n B, C = {F'H G

r-.H G 7} and 7(C) = {F G 7:7'(F) Ç C}, where 7'{F) = {F1 gT:F Ç F'}.
Note that 7(C) is a filter in 7. It is shown in Case 2 of [Ed, Theorem 1.11] that

(B,R)+ is dually isomorphic to 7(C). Moreover, 7 — 7(C) is an ideal generated by

a set of facets of B which form an initial segment of a recursive coatom ordering of

7. See [Ed, Theorem 1.8]. Hence by Theorem 1.3, 7(C) is contractible and hence

so is (B, R)+.    D

COROLLARY 2.3 [Ed, THEOREM 1.11].   For any region 7? in P(U,B),

u(B 7?) = { (-1)n_fc        ifR = R(F) and dïmF = fc>
10 otherwise.

PROOF. This follows directly from Theorem 2.2, since p(B,R) is the reduced

Euler characteristic of (B, R).    □

COROLLARY 2.4. If Rx < R2 in P(U,B), then (7?1,7?2) is either contractible
or homotopy équivalent to a sphere.

PROOF. It is easy to show that the interval (7?i,7?2) in P(U,B) is isomorphic

to the interval (R\,R2) in P()l,Ri). Then apply Theorem 2.2.    D

COROLLARY 2.5. If B is bounded, then P(M, B) - {B} is homotopy equivalent
to a sphere of dimension n — 1.

PROOF. The order-reversing injection 72: 7 —» P(M,B) - {B} has contractible

fibers by the proof of Theorem 2.2, hence it induces homotopy equivalence. And 7

triangulates a sphere of dimension n — 1.    D

In [Co] Cordovil generalizes hyperplane posets to a poset on the acyclic orienta-

tions of an oriented matroid and proves the generalization of Corollary 2.3 in that

context. We conjecture that Theorem 2.2 can similarly be generalized.
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