TRANSLATION-INVARIANT LINEAR FORMS ON $L_p(G)$

JOSEPH ROSENBLATT¹

ABSTRACT. Let G be a compact group such that the identity representation of G is not contained in the regular representation on $L^0_2(G,\lambda_G)$ of G with the discrete topology. Then any left translation invariant linear form on $L_p(G)$, 1 , is continuous and must be a constant times the Haar integral. This shows that many classical matrix groups <math>G admit only continuous left translation invariant linear forms on $L_p(G)$, 1 .

Let G be a compact Hausdorff group and let λ_G be the normalized Haar measure on G. A linear form on $L_p(G)$ is a functional φ on $L_p(G)$ which is linear. Given $g \in G$ and $f \in L_p(G)$, define $_g f(x) = f(g^{-1}x)$ for a.e. $x \in G$. We say that the linear form φ is invariant if $\varphi(_g f) = \varphi(f)$ for all $g \in G$. Under what conditions on G is a linear form on $L_p(G)$ automatically continuous? This problem has received considerable attention for a variety of groups and function spaces. If G is a connected compact abelian group, Meisters and Schmidt [6] showed that any invariant linear form on $L_2(G)$ is continuous. This was recently extended by Bourgain [1] to $L_p(T)$, $1 . On the other hand, Meisters [5] has shown that some totally-disconnected compact groups have discontinuous invariant linear forms on <math>L_p(G)$. The examples given here are for quite different groups than have been studied previously in this context.

We say G has the mean-zero weak containment property if for all $g_1, \ldots, g_n \in G$, and $\varepsilon > 0$, there exists $f \in L_2^0(G) = \{ f \in L_2(G) : | f d\lambda_G = 0 \}$ such that $||f||_2 = 1$ and $||g_i, f - f||_2 < \varepsilon$ for $i = 1, \ldots, n$. That is, the identity representation of G is contained in the regular representation on $L_2^0(G, \lambda_G)$ of G with the discrete topology. If G is amenable as a discrete group, then G has this property. On the other hand, if G contains a dense discrete subgroup with Kahzdan's property T, then G does not have the mean-zero weak containment property. Recently, in solving the Banach-Ruziewicz problem for S^2 and S^3 , V. G. Drinfeld [3] has shown that SO(3) and SO(4) do not have the mean-zero weak containment property. This, together with Margulis [4], shows that SO(n), $n \ge 3$, does not have the mean-zero weak containment property. Moreover, it follows from [3, 4] that any compact simple Lie group does not have the mean-zero weak containment property. See [2, 7] for a

Received by the editors September 20, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 43A15; Secondary 43A05.

¹This work is partially supported by NSF Grant NCS 8218800.

discussion of this property and its relationship to the uniqueness of invariant means on $L_{\infty}(G)$.

LEMMA. Suppose G does not have the mean-zero weak containment property. Then there exists $g_1, \ldots, g_n \in G$ such that for some $\delta_p < 1$ and any $f \in L^0_p(G)$, 1 , we have

$$\left\| \frac{1}{n+1} \left(f + \sum_{i=1}^{n} \delta_{g_i} f \right) \right\|_{p} \leqslant \delta_{p} \|f\|_{p}.$$

PROOF. Let $\mu=(1/(n+1))(\delta_e+\sum_{i=1}^n\delta_{g_i})$ where e is the identity in G and δ_g , $g\in G$, denotes the Dirac mass measure at g. Then μ acts by convolution on $L_p^0(G)$ with $\|\mu\|_{L_p^0}\leqslant 1$. Suppose $\|\mu\|_{L_2^0}=1$. Then there exists a sequence $(f_m)\subset L_2^0(G)$ such that $\|f_m\|_2=1$ for all $m\geqslant 1$, and $\lim_{m\to\infty}\|\mu*f_m\|_2=1$. It is easy to show, as in [2, Theorem 1.1], that this forces

$$\lim_{m \to \infty} \|g_i f_m - f_m\|_2 = 0 \quad \text{for each } i = 1, \dots, n.$$

So if G does not have the mean-zero weak containment property, there exists μ as above with $\|\mu\|_{L^0_p} < 1$. An interpolation argument as in [8] shows $\|\mu\|_{L^0_p} < 1$ for all p, $1 . <math>\square$

PROPOSITION. Suppose G does not have the mean-zero weak containment property. Then there exists $g_1, \ldots, g_n \in G$ such that for every $f \in L_p(G)$, $1 , there exists <math>h \in L_p^0(G)$ such that

$$f = \left(\int f \, d\lambda_G \right) 1_G + \sum_{i=1}^n \left(h - g_i h \right).$$

PROOF. Let μ be as in the proof of the lemma. Denote by μ^n , $n \ge 1$, the nth-convolution power of μ , and let $\mu^0 = \delta_e$. Let $f_0 \in L_p^0(G)$. Since $\|\mu\|_{L_p^0} < 1$, the series $k = \sum_{n=1}^{\infty} \mu^n * f_0$ converges in $L_p^0(G)$. Also, $k - \mu * k = \mu^0 * f_0 = f_0$. If h = k/(n+1), then

$$f_0 = \frac{nk}{n+1} - \frac{1}{n+1} \sum_{i=1}^n g_i k = nh - \sum_{i=1}^n g_i h = \sum_{i=1}^n (h - g_i h).$$

If $f \in L_p(G)$, let $f_0 = f - (\iint d\lambda_G)1_G$ to get the representation of the proposition. \square

THEOREM. Suppose G does not have the mean-zero weak containment property. Then there exists $g_1, \ldots, g_n \in G$ such that any linear form on $L_p(G)$, $1 , invariant under <math>g_1, \ldots, g_n$ must be continuous and therefore a scalar times the Haar integral.

PROOF. Let $g_1, \ldots, g_n \in G$ as in the proposition. Let φ be a linear form invariant under g_1, \ldots, g_n . Then, using the representation of the proposition, $\varphi(f) = \varphi(1_G) \int f d\lambda_G$. \square

REMARK 1. Suppose G is abelian and H is a countable subgroup of G. Then [8, Theorem 14] shows that

$$S = \operatorname{span}\left\{_{g} f - f \colon g \in H, f \in L_{p}(G)\right\}, \quad 1$$

is not closed. Hence, there exists discontinuous H invariant linear forms on $L_p(G)$, 1 . This shows that the result of Meisters and Schmidt [6] requires the full invariance under <math>G, and contrasts the result above with previous results in that the invariance hypothesis is weakened.

REMARK 2. A theorem similar to the above is true for an ergodic group action on a probability space where the action does not have the mean-zero weak containment property. See Proposition 11 and the remarks after Proposition 13 in [8]. For example, let φ be a linear form on $L_p(T^2)$, 1 , where <math>T denotes the circle group. Let $\tau_1, \tau_2 \colon T^2 \to T^2$ be defined by $\tau_1(z_1, z_2) = (z_2, z_1), \tau_2(z_1, z_2) = (z_1z_2, z_2)$ for all $z_1, z_2 \in T$. If φ is a linear form on $L_p(T^2)$, $1 , such that <math>\varphi(f \circ \tau_i) = \varphi(f)$ for all $f \in L_p(T^2)$ and i = 1, 2, then φ is continuous and a scalar times the Haar integral.

REFERENCES

- 1. J. Bourgain, Translation invariant forms on $L^p(G)$ (1 , preprint.
- 2. C. Chou, A. Lau and J. Rosenblatt, Approximation of compact operators by sums of translations, Illinois J. Math. (to appear).
 - 3. V. G. Drinfeld, Solution of the Banach-Ruziewicz problem on S^2 and S^3 , J. Funct. Anal. (to appear).
 - 4. G. A. Margulis, Some remarks on invariant means, Monatsh. Math. 90 (1980), 233-235.
 - 5. G. H. Meisters, Some discontinuous translation-invariant forms, J. Funct. Anal. 12 (1973), 199-210.
- 6. G. H. Meisters and W. M. Schmidt, Translation-invariant linear forms on $L^2(G)$ for compact abelian groups G, J. Funct. Anal. 11 (1972), 407-424.
- 7. J. Rosenblatt, Uniqueness of invariant means for measure-preserving transformations, Trans. Amer. Math. Soc. 265 (1981), 623-636.
 - 8. _____, Ergodic group actions, preprint (to appear).

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210