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STRONG LIMIT THEOREMS FOR ORTHOGONAL SEQUENCES

IN VON NEUMANN ALGEBRAS

R. jajte

Abstract. Let A be a von Neumann algebra with a faithful normal state <$>. It is

shown that if a sequence (.*„) in A is orthogonal relative to <#> and satisfies the

I>(klW)2<oo.

then „X"..iX; -» 0 almost uniformly in A. Some other results related to this theorem

are also discussed.

1. Preliminaries. Strong limit theorems in a von Neumann algebra with a faithful

normal state, close to the classical ones, have been obtained for the ergodic averages

and martingales (see, for example, [4-7]). To the best of our knowledge there are

only very few results concerning sequences whose elements are orthogonal (or

uncorrelated or independent) relative to a state: for uniformly bounded sequences [3,

8] and for sequences satisfying some rather special conditions of Rosenblatt's type

[5]. Let us notice here that many results similar to the classical ones are known for

traces, i.e. for finite von Neumann algebras [3, 8]. However, for states the proofs are

more complicated and, as a rule, need some new approach because the states, in

general, are not subadditive on the lattice of projections in a von Neumann algebra.

In case of a noncommutative von Neumann algebra, the notion of independence of

its subalgebras with respect to a state [3] seems to be very restrictive, especially when

the state is not tracial. On the other hand, some ideas of the correlation theory of

stochastic processes can be developed in a natural way on the ground of quantum

mechanics [1]. In particular, it seems to be important to have some information

about the asymptotic behaviour of sequences of uncorrelated observables. This is the

motivation of our work. The main goal of this paper is to prove a strong law of large

numbers for sequences orthogonal relative to a state. Let us begin with some

notation and definitions. Throughout, A will denote a von Neumann algebra with a

faithful normal state <I>. For a projection p, always p1 = 1 — p, and \x\2 = x*x for
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every x & A. We say that a sequence (xn) in A converges almost uniformly to x if,

for each e > 0, there is a projection/? G A with §(p±) < e and such that

ll(*„ - x)p\\ -»0as/i-»oo.

A sequence (xn) in A is said to be convergent almost completely to x if, for every

e > 0, there exists a sequence (qn) of projections in ^4 such that E„<i>(l — q„) < oo

and \\(x„ - x)q„\\ < e for n = 1,2,_Relations between the almost complete and

almost uniform convergence will be discussed in the Appendix.

Two elements x and y in A are said to be orthogonal relative to <i> if <$>(x*y) = 0.

Two elements x and y are said to be uncorrelated (relative to <>) if <¡>(xy) = <¡>(x)<j>(y).

Of course, both relations are symmetric (it is enough to take the adjoints).

Obviously, if x and y are uncorrelated, then the "centered" elements x — <$>(x)

and y — $(y) are orthogonal. For a self adjoint operator x in A and a Borel set Z on

the real line, the symbol ez(x) will denote the spectral projection of x corresponding

to the set Z; in particular,

/oc XedX(x)    (spectral representation)..*  —   i        i\e j\\a J      yapt^uai i ujji c>cii lauvuiy.

In the sequel we shall need the following theorem which is a special case of the

noncommutative maximal ergodic theorem of Goldstein [5].

Theorem 1. Let (an) be a sequence of positive elements in A and let (ek) be a

sequence of positive numbers such that

00 -,

A = l

Then there exists a projection p g A with </>(/>)> 1 - ^T-iek1(l>(ak) and sucn tnat

\\panp\\ < 2e„forn = 1,2,....

2. Strong law of large numbers. In this section we prove the following strong limit

theorem on sequences orthogonal relative to a state.

Theorem 2. Let A be a von Neumann algebra with a faithful normal state <j> and let

(xn) be a sequence ofpairwise orthogonal elements of A (i.e. <}>(x*xm) = 0 for n # m).

If

O) f(^f)2<i>(k|2)<-'« = i
then the averages

(2) S„ = l Í xk
k = \

converge to zero almost uniformly.

In order to prove this theorem we start with the following

Proposition. Let (yn) be a sequence of pairwise orthogonal elements of A. Put
n

(3) '„=  LjV
k = \
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Then there exists in A a sequence (Bm) of positive operators such that

(4)

and

(5)

|fj   < (m + l)7?„,    for I <«<2m,

4>(Bm)<(m + l) 2>(b/).
A = l

Proof. The proof is based on the idea which goes back to Plancherel [10] and is

well known in the theory of orthogonal series [2]. Namely, we start from the dyadic

representation of the index n. Divide the interval 7 = (0,2"'] into intervals (0,2m_1]

and (2"'_ ', 2"'], each of these intervals into halves, and so on; we obtain in this way

a sequence of partitions of 7. The elements of the first partition are of length 2m~\

the elements of the rih partition are of length 2"'~r, For a positive integer n < 2m,

we take its dyadic representaion. Then the interval (0, n] can be written as the sum

of at most m disjoint intervals If"\ each of which belongs to a different partition,

that is,

(6) (o,*]- UT,

where Ijn) is empty or of length \I-n)\ = 21 (j = 1,2,.. . ,w). We can write
m

(7) t„ = £   E yk
7 = 0 Ü6/J"1

(of course, we put T.ke/^>yk = 0 in the case Ijn) is empty). Let us remark now that

for any sequence z,, z2,... ,z„of elements of A we have

2n n

E Zk    < « E \zk\ .
A = 1 A• = 1

This easily follows by induction from the inequality x*y + y*x < x*x + y*y. Put

(8)

(9) B. I Lyk
I    Ae/

where 7 runs over all intervals which appear as the elements of the partitions of

(0,2"']. Then we have

(10) k„l  < {m + 1) E
7 = 0

E yk
A e I

<(m + l)B„

Moreover, Bm does not depend on « g  (0,2"'] and(5) holds, which completes the

proof of the proposition.

Proof of Theorem 2. Put SN = (l/N)Lk=xxk. Let 2* < N < 2k + 1. Then
,2

(11) |Sjv     S2i\ -     — \ Y —
N      2k       ,Xs + N

*   ' v=l f-2* + l

N

E  X¡

< 2 N     2k
v=l A^

N

E  x,
= 2* + l



232 R. JAJTE

Applying the Proposition, we have that

,2
\S„ - S,J   < 2

1-2A
2*

E xs
s-l

+ (k + 2)Bk

where Bk is a positive operator, independent on TV g  (2á,2a + 1] and such that

(12) *(Bk)<(k + 2)   E  <¡>(k|2);

thus, for 2k < N < 2k + 1, we have

■2" +1

(13) \SN-S2.\   <Dk,

where Dk ^ A +, and

(14) Dk)^2
1-2A-

2< + l

£*(kf)+(* + 2)  E  *(kl)
s-l = 2* + 1

By the assumptions of the theorem, we have

(15) £*(£*) < £21-"^i-£*(:W)
A = l A = l

2v/logi

,2A

.V

2*> +1

+ E2'-^(H2)2  E  *(kl2)
* s = 2* + l

2\/ log i

A = l

£*(kl)
2\/logJ

.5=1

2/    30

E ~~; + const.
a = i kz

Moreover,

(16)

oc oo        -i        2

E<í>(l^l2)= E T^E^tkl2)
A=l  z      s-lA = l

3C ^2A     so / 1

A = l

< oo.

Let e > 0 be given. By (15) and (16) one can find a sequence (ek) of positive

numbers such that e,. -» 0 and

(17) £e^(|s2,|2 + i),)<f.
A = l

By Theorem 1, there is a projection p g A with </>(/>)> 1 — e and such that

(18) \\p\S2<*\ p\\ < 2ek    and    \\pDkp\\< 2ek.

Thus, for 2k < N < 2k + 1, we have the estimation

2 2

II-Stv/HI =IK5/v - s2")p + ̂ »^i

<2[||(5„-s20p||2+||^/7||2]

= 2

<2

MSV — S2*l p\\ + \\p\S2i\ p\

\\pDkp\\ + \\p\S2t\ p\ < 8e, -» 0    as A -» oo.
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This means that S^ = (l/N)T.^=xxs converges to zero almost uniformly, which ends

the proof.

3. Comments. Let us compare Theorem 2 with the classical results. The Rade-

macher-Menchoff theorem on the almost sure convergence of orthogonal series [2]

gives, via Kronecker's lemma, the following strong law of large numbers.

If, for a sequence ( Xn) of uncorrelated random variables,

/ i \ 2

E-ap    varU„)<oo,

then Ó/"»)E*-i( Xk - EXk) -» 0 with probability one.

Of course, Theorem 2 can (and should) be treated as the noncommutative

extension of the strong law of large numbers just formulated.

Under some conditions stronger than in Theorem 2 one can obtain better

convergence of the averages. Namely, it is easy to prove the following two theorems.

Theorem 3. Let (xn) be a sequence in A orthogonal relative to a state <j>. If

oc

E ß.v^lkl ) < °°    when 0 < as J,0,

and

OC -i

E t-< °°'m    2      - -~ i
,=i s as

then (\/njL"=xxs -» 0 almost completely.

Proof. Put sN = N-lL^xxs. Then

1     N 1       N

<t>{\SNf) = —2L <e(\xf) < -JT- E a,*(kl ),
n   ,v = i iv aN s = i

thus LH\SN\2) < oo. For e > 0, let us put qN = e[0%^{\SN\2\ Then \\SNqN\\ < e for

N = 1,2,_Moreover,
oc oc

E *(?¿)<e-2£<»(|Sj)< oo,
/V=l A = l

which ends the proof.

The next theorem is a stronger version of Batty's result [3, Theorem 4.1].

Theorem 4. Let (Xn) be a uniformly bounded weakly independent (in the sense of

[3]) sequence in A, with <f>( Xk) = 0. Then (l/n)E"=1 Xs —> 0 almost completely.

Proof. Let e > 0. Put SN = (l/N)L?=xXx. It is easy to show that <i>(|^|4) <

A'-4(3A'2 - N), hence E^OSJ4) < oo. Put qN = <?[0 ̂(ISJ4). It follows that

£g+(^)<cp and ||5„^||4 < mS^lV'll < £4 for N = l,2,..., which ends the

proof.

4. Appendix. In this section we discuss the relationship between the almost

uniform and almost complete convergence. Let us remark first that if 4> is a trace,

then the almost complete convergence implies the almost uniform convergence.
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Indeed, let Xn -* 0 almost completely. Then there is a sequence of projections qn

such that || A^JI < e for n = 1,2,..., and L„<¡>(dn) < °°. Putting pn = l\f=„qs, we

have <i>(l — pn) < £f_„<í>(l ~ qs) ~* 0. The last condition implies the almost uniform

convergence [9, Theorem 3.1].

When <p is a state, we have the following

Theorem 5. Let A be a von Neumann algebra with a faithful normal state <¡>. Let

( Xn) be a bounded sequence in A. If' Xn -* X almost completely, then Xn -* X almost

uniformly.

Proof. We can assume that ||AJ| < 1 and x = 0. Let e > 0. We find a sequence

(<7„) of projections in A such that E„<i>(<7,f) < °o and ||An^„|| < e for n = 1,2,_Let

us fix a sequence (e„) of positive numbers such that e„ -» 0 and Z^=1<i>(l - q„)e~l <

e/2. By Theorem 1 there is a projection p g A with ^(p-1) < e and such that

Wpq» P\\ = II^T1!!2 < 2e„ for « = 1,2.Then we have

\\xnp\\ < \\xnqnp\\ + \\x*rip\\ < II*»« J + Ik HI

< e +(2e„)'/2 < 2e    forn>M0(e).

Thus the following condition is satisfied:

.   . For each e > 0 there is a projection p with <£(/>) > 1 — e and

^ such that ||Xnp\\ < e for n> n0(e).

We shall show that the condition ( * ) implies the almost uniform convergence of xn

to zero. We first prove that ( * ) implies:

For each e ^ 0 and for each projection q g A there is a

( * * ) projection r g A such that r ^ q, <¡>(q - r) < e and \\X„r\\ < e

for n large enough.

Indeed, let 0 < en -» 0. By ( * ) we find in A a sequence of projections rn with

<t>(rn) > 1 - £„, and a sequence of positive integers m(n) such that ||Am/-J| < e„ for

m > m(n). Let a projection ç g /I be given. Then <¡>(qr¿ q) -» 0 and we can fix «0

such that e„( < e and <h(qr¿-q) < e4. Let r = qe{0.ei^(qr¿- q). Then we have r < g,

<M<7 - r) < e2 and \\r^r\\ < e. Moreover, \\Xmr„g\\ < e„o for m > m(n0). Thus \\X„r\\

< 11 *»//'" 11 + \\Xmrn r\\ < 2« for m > m(n0), which ends the proof of the implica-

tion (*)-*(**).

Let e > 0 be given. By ( * * ) we can find in A a sequence of projections (pn) such

that l=Po>Pi>P2> ■•, <KP„- P„ + i) < 2""e and \\Xmp„\\ < 2~"e for m >

m(n0). Put p = AkPk. Then ^(p^ = Y.n<t>(P„ ~ Phil) < «• Moreover, \\Xmp\\ <

\\Xmp„ || < 2"""e for m > m(n0). That means that Xm -» 0 almost uniformly. The

proof is completed.
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