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REMARKS ON A PAPER BY A. AZIZ

ZALMAN RUBINSTEIN

Abstract. The paper consists of two parts. In the first part a short proof of the

main theorem due to A. Aziz on the location of zeros of composite polynomials is

given. In the second part some properties of a fixed length continuation of a

polynomial are deduced.

In this note we shall indicate a short proof of the main theorem in [1] concerning

the zeros of composite polynomials and then apply these results to consider a

problem in fixed length continuation of polynomials.

1. The following main theorem was proved in [1] via several lemmas and Grace's

theorem.

Theorem A. If P(z) = L"=0C(n, j)AjZJ and Q(z) = *Ly=0C(m, j)B¡zJ are two

polynomials of degree n and m respectively, m < n, such that

(1)       C(m,0)AoBm-C(m,l)AxBm_x+  ■ ■ ■ +(-l)mC(m, m)A„,B0 = 0,

then the following holds:

(i) If Q(z) has all its zeros in the disk \z\ < r, then P(z) has at least one zero in

|2|< r.

(ii) If P(z) has all its zeros in the region \z\ ^ r, then Q(z) has at least one zero in

\z\ > r.

We propose the following short

Proof, (i) Relation (1) is invariant under the transformation z -» rz in P(z) and

Q(z) so that we may assume r = 1. Assume by contradiction that all zeros of P(z)

lie in |z| > 1. By the well known Gauss-Lucas result on the zeros of the derivative of

a polynomial, all the zeros of

m

Px(z) = D{"-m)[znP(l/z)] = «(« - 1) • • • (w + 1) £ C{m, j)AjZm-J

7=0

lie in \z| < 1, so that the zeros of

m

P2(z) = z"'Px(l/z)= ZC(m,j)AjZJ
7 = 0

lie in |z| > 1.
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The hypothesis (1) means that P2(z) and Q(z) are apolar, so that by Grace's

theorem [3, Theorem 15.3] the region |z| > 1 in the extended complex plane which

contains all the zeros of P2(z) contains at least one zero of Q(z). If the degree of P2

is m - k, we shall assume that P2 has k zeros at the point at infinity so that the total

number of zeros of 7>2 is m. This is a contradiction to the hypothesis on the zeros of

Q(z).

Actually, one can avoid using the extended complex plane by assuming first that

Am + 0, then applying a continuity argument.

Proof of assertion (ii) is similar to the proof of (i). Since the zeros oiP(z) all lie in

|z| > 1, so do the zeros of 7°2(z). The conclusion follows by Grace's theorem.

2. Let m and n be fixed integers, 1 < m < «, and let p(z) = E"L0C(«, j)A,zJ,

A0 = 1, Am # 0, be a fixed polynomial. Any polynomial q(z) of the form

q(z)=p(z) + am + xzm + l+ ■■■+a„z"

will be called a continuation of p(z) of length n. Denote the family of all such

continuations by Yl(p, n). It is well known [2] that for sufficiently large n the zeros

of polynomials in n can be made to lie on an arbitrary Jordan curve which contains

the origin in its interior. However, if, as we assumed, n is fixed, there exists a largest

disk about the origin free of zeros of all members of IT. We shall give an estimate of

the radius of this disk and formulate a conjecture with regards to its exact value.

For each q g IT let ¡i(q) = aàa1<k<„\zk\, where the zk are the zeros of q with the

convention that q has (n - degg) zeros at the point at infinity. We estimate

p = p(p, n) defined by

(2) P = sup n(q).
q(Ell

A priori it is not clear that p is finite. If A s is the first nonzero coefficient with s ^ 1,

then it follows by a theorem of Van Vleck [3, Theorem 33.3] that every q g IT has a

zero in the disk |z| < [C(n, s)/\As\]l/s. Thus, 0 < p < oo.

Theorem. If p is defined by (2), then the inequality

I   m \        I   m \

(3) p < u.    E C(m, j)AjBjZ' )/ix   E C(m, j)B/Z>
1/-0 / \y=0 /

holds for any choice of complex numbers B0, Bx,... ,Bm, B0Bm ¥= 0.

For the proof of the theorem we shall need this corollary of Theorem A ([1,

Theorem 2] or [3, Theorem 16.1]).

Theorem B. If all the zeros of P(z) = E"_0C(«, j)Ajzi of degree n lie in \z\ > r

and if Q(z) = Y."'=0C(m, j)BjZj, B0Bm # 0, m < n, then every zero to of the poly-

nomial R(z) = Y.J=0C(m, j)A,B:ZJ has the form u = -aß where ß is a zero of Q and

\a\ > r.

Proof of the theorem. Fix B¡,j = 0,1,...,m, BQBm + 0. Let P* g IT such that

fi(P*) 3* p — e. We may assume that P* = P of Theorem B and r = p — e. By

Theorem B, p(R) > (p - e)\ß\, where ß is a zero of Q. Thus, ¡i(R) > (p — e)jx(Q)

and letting e -» 0, ju(7î) > pju(ô)- This completes the proof.
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One notices that the existence of an extremal polynomial P* g II for which

fi(P*) = p was not assumed. Indeed, it does not seem simple to answer the question

of whether such a polynomial exists for every given P. Choosing B¡ = 1 in (3) and

noticing that E"L0C(n, j)AjZJ G IT we have

Corollary. If Am # 0, then

I    m

\./ = 0

/    ">

E C(n, j)Ajz'J   < p < p    £ C(m, j)A]z>
\./=o

Although we have assumed that A0 =£ 0, it is easy to see that the last inequalities

hold as equalities if A0 = 0. Since the Aj are arbitrary subject to Am # 0, the

corollary shows that, for a given polynomial P of degree m, there are multiplier

sequences idependent of the coefficients which increase (decrease) n(P). Their study

may be worthwhile but it is much beyond the scope of this note.

We conclude with a

Conjecture. There exists an extremal polynomial 7"* g II for which y.(P*) = p =

inf f(BQ, Bx,... ,Bm) where f(B0, Bx,... ,Bm) denotes the right-hand side of inequal-

ity (3).

This conjecture is true for m = 1 and arbitrary n. Indeed, one verifies that for

p(z) = 1 + az, p = n/\a\, an extremal polynomial is (1 + (a/n)z)", A0 = I, Ax =

a/n so that we have equality in (3).
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