ON THE MULTIPLICITIES OF THE POWERS OF A BANACH SPACE OPERATOR

DOMINGO A. HERRERO¹

ABSTRACT. The multiplicities of the powers of a bounded linear operator T, acting on a complex separable infinite-dimensional Banach space \mathcal{X} , satisfy the inequalities

$$(**) \qquad \mu(T^n) \leqslant \mu(T^{hn}) \leqslant h\mu(T^n) \quad \text{for all } h, n \geqslant 1.$$

Nothing else can be said, in general, because simple examples show that for each sequence $\{\mu_n\}_{n=1}^{\infty}$, satisfying the inequalities (**), there exists T acting on \mathscr{X} such that $\mu(T^n) = \mu_n$ for all $n \ge 1$.

Let $\mathscr{L}(\mathscr{X})$ denote the algebra of all (bounded linear) operators acting on a complex separable infinite-dimensional Banach space \mathscr{X} . The *multiplicity* of T in $\mathscr{L}(\mathscr{X})$ is the cardinal number defined by

$$\mu(T) = \min_{\Gamma \subset \mathscr{X}} \left\{ \mathbf{c}(\Gamma) \colon \mathscr{X} = \mathsf{V} \left\{ T^n y \colon y \in \Gamma, \, n = 0, 1, 2, \dots \right\} \right\},\,$$

where $V\mathcal{R}$ denotes the closed linear span of the vectors in \mathcal{R} . It is immediate from the definition that

(1)
$$\mu(T^n) \leq \mu(T^{hn}) \leq h\mu(T^n) \quad \text{for all } h, n \geq 1.$$

Thus, in particular, if T^n is cyclic (i.e., $\mu(T^n) = 1$) for some $n \ge 1$, then T^m is also cyclic for all $m \mid n$ (where $m \mid n$ indicates that m divides n).

This is the only possible general result relating the multiplicities of the different powers of a given operator. Indeed, we have the following result.

THEOREM 1. Let \mathscr{X} be a complex separable infinite-dimensional Banach space. Given a sequence $M = \{\mu_n\}_{n=1}^{\infty}$ of natural numbers, satisfying the inequalities

(2)
$$\mu_n \leqslant \mu_{hn} \leqslant h\mu_n \quad \text{for all } h, n \geqslant 1,$$

there exists a nuclear operator T(M) in $\mathcal{L}(\mathcal{X})$ such that

$$\mu(T(M)^n) = \mu_n \text{ for all } n = 1, 2, \dots$$

For the Hilbert space case, we have

THEOREM 2. Let \mathcal{H} be a complex separable infinite-dimensional Hilbert space. Given a sequence M satisfying the conditions of Theorem 1, there exists a normal operator N(M) in $\mathcal{L}(\mathcal{H})$ such that

$$\mu(N(M)^n) = \mu_n$$
 for all $n = 1, 2, ...,$ and $\sigma(N(M)) = \{\lambda : |\lambda| \le 1\}$, where $\sigma(N(M))$ denotes the spectrum of $N(M)$.

Received by the editors February 27, 1984 and, in revised form, July 6, 1984.

1980 Mathematics Subject Classification. Primary 47A99, 47B10.

Key words and phrases. Multiplicity of an operator, powers.

¹This research was partially supported by a grant from the National Science Foundation

Let $\{e_i\}_{i=1}^{\mu_n}$ be the canonical orthonormal basis of \mathbb{C}^{μ_n} and let $e(t) = \exp\{2\pi it\}$ (t a real number). If $\alpha_0 + \alpha_1 + \alpha_2 + \cdots + \alpha_{n-1} = \mu_n$, then we write

$$A = A(\alpha_0, \alpha_1, \alpha_2, \dots, \alpha_{n-1}) = \bigoplus_{j=0}^{n-1} e^{\left(\frac{j}{n}\right)^{(\alpha_j)}}$$

to indicate the diagonal (and therefore normal) operator defined by

$$Ae_{i} = \begin{cases} e_{i}, & 1 \leq i \leq \alpha_{0}, \\ e(j/n)e_{i}, & \alpha_{0} + \alpha_{1} + \cdots + \alpha_{j-1} < i \leq \alpha_{0} + \alpha_{1} + \cdots + \alpha_{j} \\ & (j = 1, 2, \dots, n-1). \end{cases}$$

Observe that A^n is the identity operator, and therefore

$$\mu(A^n) = \dim \mathbf{C}^{\mu_n} = \mu_n.$$

It is clear that every operator satisfying this condition must also satisfy

(4)
$$\mu(A^m) \geqslant \{\text{smallest integer greater than or equal to } m\mu_n/n\}$$

= $[(m\mu_n + n - 1)/n] = [(m\mu_n - 1)/n] + 1$

for each m|n, where [t] denotes the integral part of the real number t. (To see this, use (1).)

Observe that, for each $k \ge 1$,

(5)
$$\mu(A^k) = \mu\left(\bigoplus_{j=0}^{n-1} e\left(\frac{kj}{n}\right)^{(\alpha_j)}\right) = \max_{0 \le j \le n} \Sigma\{\alpha_j : kj \equiv t \pmod{n}\}$$

(with the convention that $\sum \{\alpha_j : kj \equiv t \pmod{n}\} = 0$ if $kj \not\equiv t \pmod{n}$ for all j = 0, 1, 2, ..., n - 1).

The key result is Lemma 3 below, which says that, for a clever choice of $\alpha_0, \alpha_1, \ldots, \alpha_{n-1}, \mu(A^k)$ does not exceed $\mu(B^k)$ for any operator B such that $\mu(B^n) = \mu_n$ (for all $k = 1, 2, \ldots$).

LEMMA 3. Let $n, \mu_n \ge 1$ and let

(6)
$$s_n = [(\mu_n - 1)/n] + 1$$
 and $a_n = \mu_n - n(s_n - 1)$. If

$$A_n = \left\langle \bigoplus_{j=0}^{a_n-1} e\left(\frac{j}{n}\right)^{(s_n)} \right\rangle \oplus \left\langle \bigoplus_{j=a_n}^{n-1} e\left(\frac{j}{n}\right)^{(s_n-1)} \right\rangle,$$

then $\mu(A_n^n) = \mu_n$ and

$$\mu(A_n^k) = \mu(A_n^{(k,n)}) = \left[((k,n)\mu_n - 1)/n \right] + 1$$
$$= \min\{\mu(B^k) : B \in \mathcal{L}(\mathcal{X}), \mu(B^n) = \mu_n \}$$

for all k = 1, 2, ..., where $(k, n) = G.C.D.\{k, n\}$ and \mathcal{X} is an arbitrary complex separable Banach space with dim $\mathcal{X} \ge \mu_n$.

PROOF. It follows from (3) and (5) that

$$\mu(A_n^n) = \mu(A_n^{hn}) = \mu_n \qquad (h = 1, 2, ...)$$

and

$$\mu(A_n) = \max\{s_n, s_n - 1\} = s_n.$$

Let $\mathbf{Z}_n = \mathbf{Z}/n\mathbf{Z}$. Observe that if (k, n) = 1, then the application "multiplication by k" is an automorphism of the ring \mathbf{Z}_n , whence we easily deduce (by using (5)) that $\mu(A_n^k) = \mu(A_n) = s_n$. More generally, if (k, n) = m, k = ma, n = mb, then "multiplication by k" = ("multiplication by a") \circ ("multiplication by m"); the image of "multiplication by m" is $m\mathbf{Z}_n \simeq \mathbf{Z}_{(n/m)} = \mathbf{Z}_b$, and "multiplication by a" is an automorphism of the subring $m\mathbf{Z}_n$ because (a, b) = 1. It follows from these observations, along with (4) and (5), that

$$\mu(A_n^k) = \mu(A_n^m) \ge [(m\mu_n - 1)/n] + 1$$
 for all $k = 1, 2, ...$

Thus, in order to complete the proof, we only have to show that if 1 < m < n and m|n, then $\mu(A_n^m) = [(m\mu_n - 1)/n] + 1$. By using (5), we have

$$\mu(A_n^m) = \max_{0 \le t < n} \left\{ s_n(\mathbf{c} \{ j : jm \equiv t \pmod n), 0 \le j < a_n \right\} \\ + (s_n - 1)(\mathbf{c} \{ j : jm \equiv t \pmod n), a_n \le j < n \}) \\ = \max_{0 \le t < n} \left\{ s_n \cdot \mathbf{c} \{ j : jm \equiv t \pmod n \} - \mathbf{c} \{ j : jm \equiv t \pmod n, a_n \le j < n \} \right\} \\ = s_n \cdot \mathbf{c} \{ j : jm \equiv 0 \pmod n \} - \mathbf{c} \{ j : jm \equiv 0 \pmod n, a_n \le j < n \} \\ = ms_n - \mathbf{c} \{ l : a_n \le l(n/m) < n \} \quad \text{(using the fact that } \alpha_0 = s_n, \alpha_1 = s_n, \\ \alpha_1 = s_n, \dots, \alpha_{a_n - 1} = s_n, \alpha_{a_n} = s_n - 1, \dots, \\ \alpha_{n - 1} = s_n - 1 \text{ is a nonincreasing sequence}) \\ = ms_n - \mathbf{c} \{ l : (m/n)a_n \le l < m \} = ms_n - [m - (ma_n/n)] \\ = ms_n - [ms_n - (m\mu_n/n)] \\ = m[(\mu_n - 1)/n] + m - [m[(\mu_n - 1)/n] + m - (m\mu_n/n)] \quad \text{(using (6))}.$$

Let $\mu_n = hn + g$, where $h \ge 0$, $0 \le g < n$; then a straightforward computation shows that

(7)
$$\mu(A_n^m) = \begin{cases} mh & \text{if } g = 0, \\ mh + m - [m - (mg/n)] & \text{if } 1 \leq g < n. \end{cases}$$

On the other hand,

$$[(m\mu_n - 1)/n] + 1 = \begin{cases} mh & \text{if } g = 0, \\ mh + [(mg - 1)/n] + 1 & \text{if } 1 \leq g < n. \end{cases}$$

Thus, $\mu(A_n^m) = [(m\mu_n - 1)/n] + 1 = mh$ for the case when g = 0. If $\ln/m < g \le (l+1)(n/m)$, then

$$\mu(A_n^m) = [(m\mu_n - 1)/n] = mh + l + 1, \qquad l = 0, 1, 2, ..., m - 1,$$

whence we conclude that $\mu(A_n^m) = [(m\mu_n - 1)/n] + 1$ for all m|n, 1 < m < n.

The proof of Lemma 3 is now complete. \Box

PROOF OF THEOREM 1. Suppose that \mathcal{H} is a Hilbert space with orthonormal basis $\{e_i\}_{i=1}^{\infty}$. Define

$$\begin{split} A_1 &= 1^{(\mu_1)} \quad \text{on } \bigvee \{ e_1, e_2, \dots, e_{\mu_1} \}, \\ A_2 \quad \text{on } \bigvee \{ e_{\mu_1+1}, e_{\mu_1+2}, \dots, e_{\mu_1+\mu_2} \}, \\ & \vdots \\ A_n \quad \text{on } \bigvee \{ e_{\mu_1+\mu_2+\ldots+\mu_{n-1}+1}, e_{\mu_1+\mu_2+\ldots+\mu_{n-1}+2}, \dots, e_{\mu_1+\mu_2+\ldots+\mu_n} \}, \\ & \vdots \end{split}$$

exactly as in Lemma 3.

Let $\{r_n\}_{n=1}^{\infty}$ be any strictly decreasing sequence of positive reals with $r_1 = 1$. Now we define

$$T(M) = \bigoplus_{n=1}^{\infty} r_n A_n \in \mathscr{L}(\mathscr{H}).$$

It is easy to check that T(M) is normal, ||T(M)|| = 1,

$$\sigma(T(M)) \subset \left(\bigcup_{n=1}^{\infty} \left\{r_n e\left(\frac{j}{n}\right): j=0,1,2,\ldots,n-1\right\}\right)^{-},$$

and

$$\mu(T(M)^k) = \sup_{n} \mu(A_n^k) \qquad (k = 1, 2, \ldots).$$

By using (2) and Lemma 3, we deduce that

$$\mu(A_n^k) = \mu(A_n^{(k,n)}) = [((k,n)\mu_n - 1)/n] + 1 \le \mu_k = \mu(A_k^k)$$

for all n = 1, 2, ..., and therefore

$$\mu(T(M)^k) = \mu_k$$
 for all $k = 1, 2, \dots$

Furthermore, if $r_n \downarrow 0$ fast enough, then T(M) is a nuclear operator. (It suffices to take $r_n = (n + \mu_n)^{-4}$, n = 1, 2, ...)

This proves Theorem 1 for the case when \mathscr{X} is a Hilbert space. If \mathscr{X} is not a Hilbert space, then it is enough to repeat the above construction with the orthonormal basis replaced by a normalized Markushevich basis (see [2]; the details are left to the reader). \square

PROOF OF THEOREM 2. We begin by constructing a nuclear normal operator T(M) exactly as in the previous proof.

Let L be a diagonal normal operator defined by $Lf_{ij} = t_i e(v_j) f_{ij}$ with respect to an orthonormal basis $\{f_{ij}\}_{ij=1}^{\infty}$, where $\{t_i\}_{i=1}^{\infty}$ is a denumerable dense subset of (distinct points of) $(0,1)\setminus\{r_n\}_{n=1}^{\infty}$ and $\{e(v_j)\}_{j=1}^{\infty}$ is a denumerable dense subset of the unit circle such that v_j and v_j/v_h are irrational for all j and, respectively, for all $h \neq j$. Then L is a normal operator, the set of all eigenvalues of L^k is disjoint from the set of all eigenvalues of $T(M)^k$ for each $k=1,2,\ldots$, and it straightforward to check that

$$\mu(\lbrace T(M) \oplus L \rbrace^k) = \max\{\mu(T(M)^k), \mu(L^k)\}$$

= \max\left\(\mu_k, 1\right\right\) = \mu_k \quad \text{for all } k = 1, 2, \ldots

(see [1]), and

$$\sigma(T(M) \oplus L) = \sigma(L) = \{\lambda : |\lambda| \leq 1\}.$$

Thus, the normal operator $N(M) = T(M) \oplus L$ satisfies all our requirements.

REFERENCES

- 1. J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75-94.
- 2. J. T. Marti, Introduction to the theory of bases, Springer-Verlag, Berlin, Heidelberg and New York, 1969.

DEPARTMENT OF MATHEMATICS, ARIZONA STATE UNIVERSITY, TEMPE, ARIZONA 85287