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ON THE MULTIPLICITIES OF THE POWERS

OF A BANACH SPACE OPERATOR

DOMINGO A. HERRERO1

Abstract. The multiplicities of the powers of a bounded linear operator T, acting

on a complex separable infinite-dimensional Banach space X, satisfy the inequalities

(**) a(T")*iV.(Th")*iha(T")    for all A, n » 1.

Nothing else can be said, in general, because simple examples show that for each

sequence {/¿„ }^_,, satisfying the inequalities (* *), there exists T acting on .2"such

thatfi(T") = u„ for all n > 1.

Let áC(^) denote the algebra of all (bounded linear) operators acting on a

complex separable infinite-dimensional Banach space SC. The multiplicity of T in

££( 2£ ) is the cardinal number defined by

p(T) = min {c(T):iT=y{T"y:y G T, n ,= 0,1,2,...}},
r ci?"

where Va? denotes the closed linear span of the vectors in £%. It is immediate from the

definition that

(1) p(T") < ii(Th") < hp(T")    for all/!,« > 1.

Thus, in particular, if T" is cyclic (i.e., p(T") = 1) for some w > 1, then T"' is also

cyclic for all m \ n (where m \ n indicates that m divides n ).

This is the only possible general result relating the multiplicities of the different

powers of a given operator. Indeed, we have the following result.

Theorem 1. Let tTbe a complex separable infinite-dimensional Banach space. Given

a sequence M = {/"■„} ̂L i of natural numbers, satisfying the inequalities

(2) u   < phn < ftu    forallh,n^l,

there exists a nuclear operator T(M) in^C(iT) such that

n(T(M)") = u„   for all n = 1,2,....

For the Hilbert space case, we have

Theorem 2. Let Jifbe a complex separable infinite-dimensional Hilbert space. Given

a sequence M satisfying the conditions of Theorem 1, there exists a normal operator

N(M)inSe(3V) such that

p(N(M)") = nn   for all n = 1,2,...,    and   a{N(M)) = {X: |X| « 1},

where a(N(M)) denotes the spectrum ofN(M).
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Let {e,}/tZi be the canonical orthonormal basis of C1" and let e(t) = exp{2:uit} (t

a real number). If a0 + a, + a2 +  • • • + an_l = ßn, then we write

"-1       /   j s(a,)

^ =^(a0,a1,a2,...,o„_1)=   ©e   -
,=o   Vn )

to indicate the diagonal (and therefore normal) operator defined by

te],       1 < i < a0,

Ae, = l e(j/n)e¡,        a0 + ax +   ■■■ + a^x < ; ^ a0 + a, +   • ■ • + a,

' 0-1,2,....«-I).

Observe that A" is the identity operator, and therefore

(3) MM") = dimC» = ,v

It is clear that every operator satisfying this condition must also satisfy

(4) p(A"') ^ {smallest integer greater than or equal to mpn/n)

= [(i*>Ü + n - l)/n] = [(m<i„ - l)/n] + 1

for each m\n, where [t] denotes the integral part of the real number t. (To see this,

use(l).)

Observe that, for each k > 1,

I "~1    I ki\iai)\
(5) u(^*) = u    © <?  — =   max  £{a • kj = t (mod »)}

1   /—0     \ n I       j        0</<n

(with the convention that £{0,: /y — t (mod«)} = 0 if kj * t (mod«) for all

; = 0,1,2,...,« - 1).
The key result is Lemma 3 below, which says that, for a clever choice of

a0, a,,...,aM_i, ¡J-(Ak) does not exceed ¡i(Bk) for any operator B such that

tt(£") = u„ (for all A: = 1,2,...).

Lemma 3. Lei «, ¡u„ > 1 and let

(6) s„ = [(u„ - Ï)/«] + 1    a«¿   a„ = u„ - «(5,, - 1).

/«e« ;ti(/l¡¡) = ft,, a«í/

tt(i*) = tt(^*^)-[((Ar,«)tt„-l>/«] + l

= min{u(Ä*): íe^í),^") = u,,}

/o/" all k = 1,2,...,  where (k, n) = G.C.D.{â:, «} a«<7 5" is an arbitrary complex

separable Banach space with dim #*> ¡u„.
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Proof. It follows from (3) and (5) that

p(A;) - p{A?) - ¡iH       (A = 1,2,...)

and

H(A„) = max{s„,s„- 1} = s„.

Let Z„ = Z/«Z. Observe that if (k, n) = 1, then the application "multiplication

by k" is an automorphism of the ring Z„, whence we easily deduce (by using (5))

that p(Ak) = ¡i(An) = sn. More generally, if (k, n) = m, k = ma, « = mb, then

"multiplication by fc"= ("multiplication by a")"("multiplication by «?"); the

image of "multiplication by m" is «iZ„ == Z(„/m) = Zh, and "multiplication by a"

is an automorphism of the subring mZn because (a, b) = 1. It follows from these

observations, along with (4) and (5), that

M(4S) - mOC) > [(^,,-1)/«] +1    forall/c = l,2,....

Thus, in order to complete the proof, we only have to show that if 1 < m < « and

«?|«, then p(A"') = |(wju„ - 1)/«] + 1. By using (5), we have

p(A",;)=   max {sn(c{j:jm = ?(mod«),0 <y < a,,}
Ossroi

+ (s„ - l)(c{ j:jm = ?(mod«),a„ «7 < «})

=   max {sn ■ c( j : jm = t (mod « )} — c{ j : jm = t (mod « ), an < j < « }}
o « t < n

= s„ • c{j:jm = 0 (mod «)} - c{j:jm = 0 (mod «), a„ < 7 < « }

= msn — c{ /: an < /(«/«?) < « }    (using the fact that a0 = sn, a, = 5,,,

«i ■=*„»• ••.««;-! = ?«>"«„ = i» - I..---.

a„_, = sn — 1 is a nonincreasing sequence)

= ms, — c{/: (m/n)an < / < m } = wsn — [m — (man/n)\

= msn -[msn -(mp.n/n)\

= ™[(m„ - :)/n] + w -[w[(m„- 1)/«] + w "('«ri»]    (using (6)).

Let u„ = /i« + g, where «^0, 0 < g < «; then a straightforward computation

shows that

j mh    if g = 0,

ß(A">= \mh +m-[m-(mg/n)}    ifl<g<«.

On the other hand,

r ,n ( mh    if g = 0,
[(«z-t,, - 1)/«] + 1 = j ^ + [(mg _ 1)A] + l    m<g<n

Thus, jn(^4"') = [(mfin - 1)/«] + 1 = mh for the case when g = 0. If /«/m < g <

(/ + l)(«/m), then

p(AZ) = [(w/i„- 1)/«] = mh + 1+ 1,       / = 0,1,2,...,»! - 1,

whence we conclude that ¡j.(A"') = [(mpn — 1)/«] + 1 for all w|«, 1 < m < n.

The proof of Lemma 3 is now complete.    D
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Proof of Theorem 1. Suppose that 3? is a Hilbert space with orthonormal basis

{e,}fLx. Define

,4, =1<">>    onV{ex,e2,...,eJ,

¿i   onV{«|h+1,e#l+2,...,«(li+,i},

An    on V{eßt+li2+ ... + íl)i_, + i' *(i1+^+-..•.+(!„_,+2»*• •>e/ii+jij+...+/»„/>

exactly as in Lemma 3.

Let {/•„}"_! be any strictly decreasing sequence of positive reals with r, = 1. Now

we define

It is easy to check that T(M) is normal, ||r(M )|| = 1,

o(T(M))czi (J |rne(|);/=Q,l,2.«-

and

tt(r(M)*)-- supm(^Í)       (A = 1,2,...).

By using (2) and Lemma 3, we deduce that

ß{A*) = Jt(A<***) = [((k, «)M„ - 1)/«] + 1 < **•- ß(Akk)

for all « = 1,2,..., and therefore

n{T{M)k) = pk    for all k = 1,2,....

Furthermore, if rn |0 fast enough, then T(M) is a nuclear operator. (It suffices to

take/-„ = (« + M„)-4,« = 1,2.)

This proves Theorem 1 for the case when #"is a Hilbert space. If Ä"is not a Hilbert

space, then it is enough to repeat the above construction with the orthonormal basis

replaced by a normalized Markushevich basis (see [2]; the details are left to the

reader).    D

Proof of Theorem 2. We begin by constructing a nuclear normal operator T( M )

exactly as in the previous proof.

Let L be a diagonal normal operator defined by LftJ = r,e(¡;7)/,; with respect to

an orthonormal basis {/y}Ji-u where {t¡}°°=x is a denumerable dense subset of

(distinct points of) (0,1)\ {rn}™=x and [e(vj)}J'_x is a denumerable dense subset of

the unit circle such that p and v¡/vh art irrational for ally and, respectively, for all

« + j. Then L is a normal operator, the set of all eigenvalues of Lk is disjoint from

the set of all eigenvalues of T(M)k for each k = 1,2,..., and it straightforward to

check that

p({T(M) (& L}k) = max{ß(T(M)k), v(Lk)}

= max(juA, 1} = pik    for all k = 1,2,...
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(see [1]), and

a(T(M) © L) = a(L) = {A: |X| « 1}.

Thus, the normal operator N(M) = T(M) © L satisfies all our requirements.
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