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THE STRONG LIMIT OF VON NEUMANN SUBALGEBRAS

WITH CONDITIONAL EXPECTATIONS1

MAKOTO TSUKADA

Abstract. The strong lower limit and the weak upper limit of a net of von

Neumann subalgebras on which the conditional expectations exist with respect to a

fixed faithful normal state are defined. The limits coincide if and only if the

corresponding conditional expectations converge strongly.

1. Preliminaries. Let M be a a-finite von Neumann algebra and <p a faithful

normal state on M. By the GNS construction it can be considered that M is acting

on a Hilbert space 77 and there exists a cyclic separating vector $ g 77 with

<p(x) = ($|x$) for every x g M. Denote by M* the space of all a-weakly continu-

ous linear functionals on M. That is, M* is the predual of M.

For a von Neumann subalgebra N of M, if there exists a projection e of norm one

from M onto N with tp ° e = <¡p, e is called the conditional expectation onto N [3, 6].

Io. The conditional expectation onto N exists if and only if o,(N) = N for every

t g R, where {a,} is the modular automorphism group on M with respect to <p.

2°. If the conditional expectation e onto N exists, then e(x)3> = Px4> for every

x G M, where P is the orthogonal projection of 77 onto /VO.

Throughout this paper we fix a net ( Na} of von Neumann subalgebras of M and

assume that the conditional expectation ea onto Na exists for each a. The orthogonal

projection of 77 onto 77a = Aa$ is denoted by Pa. In the recent paper [5] we proved

that if {Na} is increasing (resp. decreasing), then the conditional expectation e^

onto V„Aa (resp. C\aNa) exists and ea(x) -» e^x) strongly for every x g M and

/ ° ea ~* / ° £oo m norm f°r every/ g M*. In this paper we shall introduce the notion

of the strong limit of {Na} and show that the limit exists if and only if the

corresponding [ea] converge strongly. The following are elementary but will be

useful below.

3°. For any uniformly bounded net {xy} in M and x g M, xy —> x strongly (resp.

weakly) if and only if x $ -» x4> strongly (resp. weakly) in 77.

4°. Let {Py} be a net of orthogonal projections of 77, and P an orthogonal

projection of 77. For any £ g 77, if Py£ -* P£, weakly, then it does strongly.
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2. The strong limit of {Na}. We define the strong lower limit s-lim inf Na and the

weak upper limit w-lim sup Na of { NB} as follows:

I.  x g s-lim inf Na if and  only if there exist xa g 7v*a  for each  a  such  that

suPallxall < °° ar>d xa -» x strongly;

IL x g w-lim sup A/a if and only if there exist xQ. g 7Va, for each a', where {N¿} is

a subnet of {A/Q}, such that supa<||x0-|| < oo and xa> -* x weakly.

Theorem 1. (i) s-lim inf Na is a von Neumann subalgebra of M and satisfies the

following equalities:

s-liminf Na = {x G M: ea(x) -» x strongly)

= (x G M: ea(x) -» x weakly).

(ii) Both the conditional expectation onto s-lim inf Na and the one onto

( w-lim sup Na)" exist.

(iii) V   f) Naçz s-lim inf Na ç w-lim sup Aa ç f)   V Aa.
ß    a^ß ß    «>ß

Proof, (i) We establish the first equality. " 2 " is clear. Let x belong to

s-liminf Na. There exists a uniformly bounded net {xa} such that xa g 7Va for each

a and xa -* x strongly. Then

||ea(x)$ - x$|| = \\Pax<¡> - x#j| < ||xa$ - x<5?\\ -» 0    (asaî).

Thus ea(x) -* x strongly by 3° in §1. The second equality follows from 2°, 3° and

4° in §1. We next show that s-liminf Na is a von Neumann subalgebra of M. It is

clearly closed under linear combination. Let x and y belong to s-lim inf Na. Then

lk(*K(>)# -*y®\
< ha(x)*Áy)* - ea(x)y<!>\\ + \\éa(x)y$ - xy*}

< 11*11 ' Ikai^)^ _ y*\\ + llea(-x)>'^' ~ xy$\\ -» 0    (as a î ).

Hence xy g s-lim inf Na. On the other hand, since e„(x) ~» x weakly, ea(x*) -» x*

weakly. Therefore x* g s-lim inf ¿V. Finally, let x belong to the strong closure of

s-lim inf Na. Then for any e > 0 there exists y g s-lim inf Na such that ||x$ — y<&\\ <

e/3, and for this j' there exists a0 such that ||eQ(>>)<í> — y<S>\\ < e/3 for any a i= a0.

Hence

||ea(x)$ - x*|| < ||Pax$ - Pay&\\ + \\Pay<& - y<¡>\\ + |[y<E» - x$||

< 2 ■ \\x<b - y*\\ + \\ea(y)<¡> - y$\\ < e

for any a > a0. Therefore eQ(x) -* x strongly and we have x G s-lim inf Na.

(ii) This follows from Io in §1. Indeed, let x G s-lim inf Na. Then there exist

xa g Na for each a such that xa -» x strongly. Since o-,(xa) g Na for each a and

o,(xa) -» a,(x) strongly, a,(jc) g s-lim inf 7Va. Thus s-lim inf Na is globally invariant

under the modular automorphism group. Similarly, we have

a, (w-lim sup Na) = w-lim sup Na.
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Since a, is an automorphism,

a, (w-lim sup Na)" = a, ((w-lim sup TVQ)").

Thus (w-limsup Na)" is also globally invariant under the automorphism group.

(iii) This is easily verified.

Examples, (i) Let A0 and Nx be von Neumann subalgebras with conditional

expectations and N2n = N0 and N2n+X = Nx for « = 1,2,_Then s-liminf TV„ = A0

n TV, and w-lim sup TV/? = N0 U Nx. Hence, in general, s-liminf 7Vn ¥= w-limsupNn

and w-lim sup Nn is not a von Neumann subalgebra.

(ii) If {Na} is increasing (resp. decreasing) and TV^ = VaNa (resp. C\aNa), then

Vfiïïa±pNa = C\ßVa>cßNa = TV^. In this case by Theorem 1 (iii),

s-lim inf Na = w-lim sup Na = Nx.

(iii) Denote by Aut^M) the family of («-invariant automorphisms on M. Let N be

a von Neuman subalgebra with conditional expectation e. For any a G Aut^Af) the

conditional expectation ea onto Na = a(N) exists. Indeed ea = a » e° a'1. Let {ax}

£ Aut^M) be a net such that ax -> a strongly as X î for some a g Aut^M).

Then ea (x) -» e„(x) strongly as X T for every x g A7. Hence, by Theorem 2

s-lim inf 7V„   = w-lim sup N„  = N„.

(iv) Let M be the 2x2 matrix algebra, tp the normalized trace on M, and N the

set of diagonal matrices in M. Define

/  cos 77/«     sin ir/n \

"     \ -sin ir/n     cos it/n J

and N„ = U„*NU„ for « = 1,2,.... Then

s-liminf Nn = w-lim sup Nn = N,

but Vmn„>mN„ = C • 1 andnmV„>mA„ = M.

(v) Let Nx and V2 be von Neumann subalgebras with conditional expectations, Sx

(resp. S2) the unit balls of TV, (resp. A2), and Fj (resp. P2) the orthogonal projections

onto A,$ (resp. A2«ï)). Define

í/(Aj, TV2) = max< sup ||x$ - F2x$||,  sup ||xí» - F,xí>||>.

This is the so-called Hausdorff distance between S,$ and 52$. Suppose that there

exists a von Neumann subalgebra N with conditional expectation e such that

d(Na, TV) —> 0 as af. Let P be the orthogonal projection onto Aí>. Then for any

| g 77 with ||£|| < 1

\\Pè - pM\2 = (P}\0 - <paPZ\t) - (PPM) + <pat\t)

^\\Pe-papt\\ + \\pp¿-p¿\\

^2-d(Na,N)^0    (asaî).

Therefore Pa -» P strongly, and by 2° and 3° in §1 we have ea(x) -> e(x) strongly

for every x g 77. Thus, by Theorem 2

s-liminf TVa = w-limsup Na = N.
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The converse is not always true. Let {Na} be strictly increasing and N = VaTVa.

Then for any a there exists £ g A$ with ||¿|| = 1 and £ ± NJS>. Hence d(Na, N) = 1

for every a, and Na does not converge to N in the Hausdorff metric topology, but

s-lim inf Na = w-lim sup Na = N.

3. Strong convergence of {ea}. We now state our main theorem.

Theorem 2. The following assertions are equivalent:

(i) s-lim inf Na = w-lim sup Na;

(ii) there exists a conditional expectation ex such that ea(x) —* ex(x) weakly for

every x G M;

(iii) { ea(x)} is a strongly convergent net for every x G M;

(iy) { / ° ea } 's a convergent net in norm for every f G M ».

Moreover, if the above assertions are satisfied, then e^ in (ii) is the conditional

expectation onto s-liminf TVa, ea(x) -* e^x) strongly, andf ° ea -* f ° ex in norm.

Proof, (i) => (ii). Let TV^ = s-lim inf 7V0. The conditional expectation onto Nx and

the orthogonal projection onto Nx® are denoted by ex and Px, respectively. Fix

x g M. Since [ea(x)} is uniformly bounded, for any subnet {ea,(x)} of {e„(x)}

there exists its subnet {ea»(x)} which converges to some y g M weakly. By the

assumption^ g A^. For any z g Nx

||x$ - y$\\ < lim inf ||x$ - Pa"X$||

< lim \\x<¡> - Pa»z<S>\\ = ||x4> - 2$||,

because Pa <x<í> -* y§ weakly and the norm of 77 is weakly lower semicontinuous.

Since z G Nx is arbitrary, we have y<$> = Pxx<& = em(x)$. Thus ea(x) -» ex(x)

weakly.

(ii) => (iii). It follows from 2°, 3° and 4° in §1.

(iii) => (iv). Let/ g M* be fixed. It can be assumed without loss of generality that

/is positive. Then there exists £ g 77 such that/(x) = (£|x£) for every x G M (see

[1, Theorem 6]). For any a and ß

ll/-««-/-«4< sup K*W*)í)-(€M*)i)l
ll-v||<l

<   sup   |(Pa£|x£>-(P^|x£>|

W<1

<||pai-p^lHlii|.
Since {Pa£} is a Cauchy net, so is {/ ° ea} and we have (iv).

(iv) => (i). Now we denote by e* the operator f'*-* /»e„ on M*. Then e* is a

norm-one projection (see [5]). Putting e*(/) = s-lim £*(/) (/gA/*), e* is a

bounded linear operator onM„. Furthermore, for any a

Af)-C(f)\\<H°e*Jf)-e*a°£*Jf)\\

+ Ik: »'<(/)- c • ¿:(/)i +1«:(/:) - «&(/)||
< IK • <(/) - e« °e£(/)fl + 2 • ||e* (/) - t*a{f)\\,

° £Z
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so that e* is idempotent. We denote by e^ the conjugate operator of e* on M. Then

e0O(x) = w*-lim ea(x) for every x G M and e^ is also idempotent. We put Pxx<& =

eM(x)$ (x g M). Then Pxx$ = w-lim Pax<ï> and

IIO^II < lim inf \\PaxH < ||x$||

for every x G M. Hence Px is extended to a bounded linear operator on 77. Since ex

is idempotent, so is Px. Since

(Pmx$\y$) = lim(Pax<%<&> = lim(x<ï>|Pa.y$> = (x$\Pxy$)

for every x, y g M, Px is Hermitian. Therefore Px is an orthogonal projection on

77. By 4° in §1 we have Pa -» Px strongly

Now fix x g w-lim sup Na. Then there exists a uniformly bounded net {xa>} such

that xa> g Na, for each a', where {Na-} is a subnet of {Na }, and xa, -» x weakly. For

any | g 77

<PQ-x<D - x¿*\£) = <x«D - xa,<í>\Pa4) -» 0    (asa'î),

because {xO — xa&} is uniformly bounded and Pa, -» P^ strongly. Therefore, we

have P^x^ = x4> and e„(x) -* x strongly. Thus x g s-liminf Na and (i) is proved.

If a net (xa} in M satisfies that for any a there exists y„eM such that

xß = eß(ya) for any ^«, then {xa} is called a martingale dominated by {ya). A

net {fa } in M* is also called a martingale dominated by ( ga}, if fß = ga ° eß for any

ß 4 a.

Theorem 3. (i) Let {xa} £ M be a martingale dominated by {ya}. If (ya) is

uniformly bounded, then there exists x G M such that xa = ea(x)for every a.

(ii) Let ( fa} £ M+be a martingale dominated by (ga). If {ga) is weakly relatively

compact, then there exists f G M, sue« that fa = / ° ea/o/" euery a.

Proof. Since {ya ) is uniformly bounded, there exists a subnet {ya<} of {ya} such

that ya. -* x a-weakly for some x g A/. Because any conditional expectation is

a-weakly continuous, for any fixed a, ea(ya*) -» ea(x) a-weakly as a' f. On the other

hand, for sufficiently large a' we have ea(ya') = xa, so that e„(x) = xa. Thus (i) is

proved.

(ii) is also proved similarly, because \j/ -* \p ° ea is weakly continuous on M* for

every a.
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