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THE FACTORIZATION OF A LINEAR CONJUGATE

SYMMETRIC INVOLUTION IN HILBERT SPACE

JAMES W. MOELLER

Abstract. Let A' be a closed linear transformation whose domain is dense in the

complex separable Hubert space H and whose adjoint is denoted by X*. The

operator X is said to be conjugate symmetric if T(X) c T(QX*Q), where T(X)

represents the graph of X in /7 © H and Q is a conjugation on H. The main theorem

in this note states that a conjugate symmetric linear involution X satisfies the

operator equation X = QX*Q.

1. Introduction. An involution is a transformation of a set into itself whose square

is the identity. In this note we shall study linear involutions defined on a dense

subset of a complex, infinite dimensional Hubert space. If the involution is closed

and has a polar decomposition of the form X = U\X\, then U itself is an involution.

This result is exploited to show that any conjugate symmetric involution must be

conjugate selfadjoint.

In what follows H will represent a complex Hubert space having a countably

infinite basis with (/, g) being the inner product of two vectors in H. A manifold is a

subset which is closed under vector addition and under multiplication by complex

numbers. A subspace is a manifold which is closed in the norm topology induced by

the inner product. The closure of a set F in the norm topology will be denoted by

clos F, and F1 = (g|(g, f) = 0, /e F). The Hubert space H © H consists of all

vectors/ ffi g having inner product

(/1©g1,/2©g2) = (/1,/2)+(g1,g2).

If A1 is a linear transformation defined on a manifold D c H, its graph

r(A) = {f® Xf\feD}

is another manifold in H ffi H. If this manifold is a subspace, then X is called a

closed operator. If clos D = H, then X is said to be densely defined. When X is

densely defined, it has a unique adjoint X* determined by the condition (Xf, g) =

(/, X*g) which subsists for all /in Dom X. The domain of A"* is dense in H if and

only if A"has a closed linear extension. If T(X) c T(Y), then T(Y)1 c T(X)± , and

this implies T(Y*) c T(X*). It is not difficult to establish the inclusion T(Y*X*)

c r((AT)*) whenever X, Y, and XY are all densely defined. Moreover, (XY)* =

Y*X* when A is a bounded linear transformation [7, p. 301]. A densely defined

-
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transformation A is said to be symmetric if T( X) c T( X*). It is called self adjoint if

A = A*. The crucial idea of representing a linear transformation through its

associated graph subspace first originated in the work of J. von Neumann [5].

The next theorem plays a fundamental role in our analysis of closed involutions.

Different proofs are presented in [1 and 3].

Polar Decomposition Theorem. Let X be a closed linear operator whose domain

is dense in H. Then there is a positive self adjoint operator \X\ whose domain coincides

with that of A, and a partial isometry U with initial space (Ker A)-1 and final space

Clos(Ran A") such that A = U\X\. This factorization is unique under the additional

assumption that Ker|A| = Ker A".

2. Involutions. It is self-evident from the definition that an involution on a set S is

a one-to-one transformation that maps S onto itself and satisfies the relation

A = A"1. If we define K(/ffig) = gffi/, then A is an involution if and only if

V(T(X)) c r(A).

This invariance principle leads to a simple characterization of closed, densely

defined linear involutions.

Lemma \. If X is a closed linear involution whose domain D is dense in H, there are

subspaces H+ and H" such that H + D H~= {0} and D = H + + H~. The involution X

is defined by X(h + + h~) = h + — h for all h+ in H+ and h~ in H~. Conversely, with

every pair of subspaces H + and H ~ such that H+D //"= {0} and Clos(H+ + H~) = H,

there is associated a unique densely defined closed linear involution satisfying

X(h + + h~) = h + - h~onD = H + + ¡Jr.

Proof. Let A be a closed, densely defined linear involution whose domain is D.

Since V is a unitary involution, the restriction of V to the subspace T(X) is a

bounded selfadjoint operator whose spectrum is contained in the two point set

{-1, 1}. If y denotes the restriction of V to the subspace T(A), then the subspaces

»o = {f®g\J(f®g)=f®g} and H0- = {/©g|/(/©g)=-(/©g)} are
mutually orthogonal. The spectral theorem for selfadjoint operators further asserts

that r(A) = 7/0+ © Hq. If we define H + = P(H¿) and H'= P(H^), where

/>(/© g) = /, it is easy to see that X(h + + h~) = h + - /ion D = H++ H'. Clearly,

both H + and H ~ are subspaces.

Now suppose that H+ and H~ are two subspaces such that H+C\ H'= {0} and

Clos(// + + H~) = H. Define the transformation A by the equation

X(h + + h~) = h + - h~.

If h* + h~ -» /and h+n — h~ -> g, then the vector (/ + g)/2 belongs to H+ and the

vector (/— g)/2 belongs to H~. Hence A(/) = g, and we conclude that A" is a

closed, densely defined involution uniquely associated with the subspaces H+ and

H~.

Theorem 1. Let X be a closed, densely defined linear involution whose polar

representation has the form A = U\X\. Then U is a unitary involution.
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Proof. Since A'is an involution, Ker|A~| = {0} and U is a unitary operator on H.

From the identity A = A"1 we immediately obtain U\X\ = \X\~lU*. Therefore

U\X\U= \X\~X and, after taking adjoints, we get U*\X\U* = \X\~\ Hence

U2\X\U2 = | A|, from which it follows that U2\X\ = \X\U*2 because U is a unitary

operator. This last equation immediately implies f/2|A] is selfadjoint. Now let

H+= {h+\X(h+) = h+) and H= {/V|A(/r)= -h~). Then \X\h + = U*h+, \X\h~

= -U*h~, and

(u2\x\(h++ h~), h++ h) = {\x\(h++ h~), u*2(h++ h~))

= (U*{h + - h-),U*2(h + + h~))

= (/, + -A", IA10 + -/,")).

Thus (U2\X\(h + + h~), h + + h~) > 0 for all h+ in H+ and h~ in H~. Since Dom A =

H++ H~ by virtue of Lemma 1, U2\X\ is a positive selfadjoint operator on Dom A.

The uniqueness of the polar decomposition implies U2 = I.

3. Conjugate symmetric involutions. A transformation Q on H that satisfies

Q(af+ ßg) = a*Q(f) + ß*Q(g) is called a conjugation if Q2 = I and (Qf, Qg) =

( g, / ) for every / and g in H. We remark in passing that theoretical physicists have

found conjugation operators to be useful tools for studying time reversal symmetry

in quantum mechanics [2, p. 187]. If there is a conjugation Q such that A = QX*Q,

we shall call X conjugate selfadjoint. If r(A^) c T(QX*Q), then X is said to be

conjugate symmetric. Commutativity properties of bounded conjugate selfadjoint

operators are treated in [4], but little appears to be known about their general

structure.

Lemma 2. Let X be a closed, densely defined linear involution having the property

that r(A)c T(QX*Q). If X = U\X\ is the polar representation for X, then

VQ(Dom X) c Dom X and Dom|A| c DomölAl^ß.

Proof. An application of Theorem 1 immediately yields the identity UXU = A*.

Therefore r(A^) c T(QUXUQ), and it follows that UQ(Dom A) c Dom X. Since

Dom X = Dom|AÏ and Q\X\~lQ = QU\X\UQ, we further have Dom|A| c

Uom{Q\X\-'Q).

Lemma 3. Let X denote the conjugate symmetric involution introduced in the previous

lemma, and let V = ô|Ar|"1ô|A'|"1. Then V is a densely defined linear transformation

having the property that Dom V = Dom A* and T(V) c T(QUQU).

Proof. Substituting X* = i/|A|_1 in the defining equation for V, we get V =

QUX*QUX*. This immediately implies that Dom V c Dom A*. But T(A)c

T(QX*Q) by hypothesis, so we have T(QUQUX*2) = T(QUQXUX*) c T(V).

Since A*2 is the identity on Dom A*, it follows that DomK= Dom A* and

T( V) c T(QUQU) because QUQU is a unitary transformation defined on all of H.

Theorem 2. // A is a closed, densely defined linear involution which is conjugate

symmetric, then X is conjugate selfadjoint.
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Proof. Let K be the linear transformation given by K = 2\X\ + Q\X\~lQ.

According to Lemma 2, Dom K = Dom|A|, and we can thus write K =

(2 + Q\X\-*Q\X\'l)\X\. An application of Lemma 3 now gives K = R\X\, where

R = 2 + QUQU. Since R is a bounded linear transformation on H whose spectrum

a(R) has the property that a(R) c {z|Rez > 1}, it follows that A"is a closed linear

operator with Dom K = Dom \X\. Moreover, since T(Y* + Z*) c T((Y + Z)*) for

densely defined linear transformations [7, p. 300], we obtain T(K) c r(A"*). Hence

T(R\X\) c T(\X\R*) and it follows that (R* © R)T(\X\) = rX/vIA"!/?*"1) c T(\X\).
Since a(R* © R) = a(/v*) U o(R) c (z|Rez > 1}, any invariant subspace for R*

© R is also an invariant subspace for (Ä* © R)~l [6, p. 33]. Consequently

(R* © /?)r(|A|) = r(|A|), and we conclude that QUQU\X\ = \X\UQUQ. This last

equation implies

UQUQ(Dom X) = Dom A = QUQU(Dom A),

so we finally have A = QX*Q.

Corollary. // A is a conjugate symmetric linear involution and Y is a closed

densely defined linear operator having the property that T(Y) c T( A), then Y — X.

Proof. From the hypotheses we at once find

T(Y) c r(A) c r(ßA*ß) c T(QY*Q).

Consequently QY*Q = Y by virtue of Theorem 2, and this implies X = Y.
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