THE FACTORIZATION OF A LINEAR CONJUGATE SYMMETRIC INVOLUTION IN HILBERT SPACE

JAMES W. MOELLER

ABSTRACT. Let X be a closed linear transformation whose domain is dense in the complex separable Hilbert space H and whose adjoint is denoted by X^* . The operator X is said to be conjugate symmetric if $\Gamma(X) \subset \Gamma(QX^*Q)$, where $\Gamma(X)$ represents the graph of X in $H \oplus H$ and Q is a conjugation on H. The main theorem in this note states that a conjugate symmetric linear involution X satisfies the operator equation $X = QX^*Q$.

1. Introduction. An involution is a transformation of a set into itself whose square is the identity. In this note we shall study linear involutions defined on a dense subset of a complex, infinite dimensional Hilbert space. If the involution is closed and has a polar decomposition of the form X = U|X|, then U itself is an involution. This result is exploited to show that any conjugate symmetric involution must be conjugate selfadjoint.

In what follows H will represent a complex Hilbert space having a countably infinite basis with (f, g) being the inner product of two vectors in H. A manifold is a subset which is closed under vector addition and under multiplication by complex numbers. A subspace is a manifold which is closed in the norm topology induced by the inner product. The closure of a set F in the norm topology will be denoted by clos F, and $F^{\perp} = \{g | (g, f) = 0, f \in F\}$. The Hilbert space $H \oplus H$ consists of all vectors $f \oplus g$ having inner product

$$(f_1 \oplus g_1, f_2 \oplus g_2) = (f_1, f_2) + (g_1, g_2).$$

If X is a linear transformation defined on a manifold $D \subset H$, its graph

$$\Gamma(X) = \{ f \oplus Xf | f \in D \}$$

is another manifold in $H \oplus H$. If this manifold is a *subspace*, then X is called a *closed operator*. If $\operatorname{clos} D = H$, then X is said to be *densely defined*. When X is densely defined, it has a unique adjoint X^* determined by the condition $(Xf, g) = (f, X^*g)$ which subsists for all f in $\operatorname{Dom} X$. The domain of X^* is dense in H if and only if X has a closed linear extension. If $\Gamma(X) \subset \Gamma(Y)$, then $\Gamma(Y)^{\perp} \subset \Gamma(X)^{\perp}$, and this implies $\Gamma(Y^*) \subset \Gamma(X^*)$. It is not difficult to establish the inclusion $\Gamma(Y^*X^*) \subset \Gamma(XY)^*$ whenever X, Y, and XY are all densely defined. Moreover, $(XY)^* = Y^*X^*$ when X is a bounded linear transformation [7, p. 301]. A densely defined

Received by the editors July 11, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47A05; Secondary 46J99.

Key words and phrases. Hilbert space, closed linear transformation, conjugation operator.

J. W. MOELLER

transformation X is said to be symmetric if $\Gamma(X) \subset \Gamma(X^*)$. It is called selfadjoint if $X = X^*$. The crucial idea of representing a linear transformation through its associated graph subspace first originated in the work of J. von Neumann [5].

The next theorem plays a fundamental role in our analysis of closed involutions. Different proofs are presented in [1 and 3].

POLAR DECOMPOSITION THEOREM. Let X be a closed linear operator whose domain is dense in H. Then there is a positive selfadjoint operator |X| whose domain coincides with that of X, and a partial isometry U with initial space (Ker X) $^{\perp}$ and final space Clos(Ran X) such that X = U|X|. This factorization is unique under the additional assumption that Ker|X| = Ker X.

2. Involutions. It is self-evident from the definition that an involution on a set S is a one-to-one transformation that maps S onto itself and satisfies the relation $X = X^{-1}$. If we define $V(f \oplus g) = g \oplus f$, then X is an involution if and only if

$$V(\Gamma(X)) \subset \Gamma(X)$$
.

This invariance principle leads to a simple characterization of closed, densely defined linear involutions.

LEMMA 1. If X is a closed linear involution whose domain D is dense in H, there are subspaces H^+ and H^- such that $H^+ \cap H^- = \{0\}$ and $D = H^+ + H^-$. The involution X is defined by $X(h^+ + h^-) = h^+ - h^-$ for all h^+ in H^+ and h^- in H^- . Conversely, with every pair of subspaces H^+ and H^- such that $H^+ \cap H^- = \{0\}$ and $Clos(H^+ + H^-) = H$, there is associated a unique densely defined closed linear involution satisfying $X(h^+ + h^-) = h^+ - h^-$ on $D = H^+ + H^-$.

PROOF. Let X be a closed, densely defined linear involution whose domain is D. Since V is a unitary involution, the restriction of V to the subspace $\Gamma(X)$ is a bounded selfadjoint operator whose spectrum is contained in the two point set $\{-1, 1\}$. If J denotes the restriction of V to the subspace $\Gamma(X)$, then the subspaces $H_0^+ = \{f \oplus g | J(f \oplus g) = f \oplus g\}$ and $H_0^- = \{f \oplus g | J(f \oplus g) = -(f \oplus g)\}$ are mutually orthogonal. The spectral theorem for selfadjoint operators further asserts that $\Gamma(X) = H_0^+ \oplus H_0^-$. If we define $H^+ = P(H_0^+)$ and $H^- = P(H_0^-)$, where $P(f \oplus g) = f$, it is easy to see that $X(h^+ + h^-) = h^+ - h^-$ on $D = H^+ + H^-$. Clearly, both H^+ and H^- are subspaces.

Now suppose that H^+ and H^- are two subspaces such that $H^+ \cap H^- = \{0\}$ and $Clos(H^+ + H^-) = H$. Define the transformation X by the equation

$$X(h^+ + h^-) = h^+ - h^-.$$

If $h_n^+ + h_n^- \to f$ and $h_n^+ - h_n^- \to g$, then the vector (f+g)/2 belongs to H^+ and the vector (f-g)/2 belongs to H^- . Hence X(f)=g, and we conclude that X is a closed, densely defined involution uniquely associated with the subspaces H^+ and H^- .

THEOREM 1. Let X be a closed, densely defined linear involution whose polar representation has the form X = U|X|. Then U is a unitary involution.

PROOF. Since X is an involution, $\operatorname{Ker}|X| = \{0\}$ and U is a unitary operator on H. From the identity $X = X^{-1}$ we immediately obtain $U|X| = |X|^{-1}U^*$. Therefore $U|X|U = |X|^{-1}$ and, after taking adjoints, we get $U^*|X|U^* = |X|^{-1}$. Hence $U^2|X|U^2 = |X|$, from which it follows that $U^2|X| = |X|U^{*2}$ because U is a unitary operator. This last equation immediately implies $U^2|X|$ is selfadjoint. Now let $H^+ = \{h^+|X(h^+) = h^+\}$ and $H^- = \{h^-|X(h^-) = -h^-\}$. Then $|X|h^+ = U^*h^+$, $|X|h^- = -U^*h^-$, and

$$(U^{2}|X|(h^{+}+h^{-}), h^{+}+h^{-}) = (|X|(h^{+}+h^{-}), U^{*2}(h^{+}+h^{-}))$$
$$= (U^{*}(h^{+}-h^{-}), U^{*2}(h^{+}+h^{-}))$$
$$= (h^{+}-h^{-}, |X|(h^{+}-h^{-})).$$

Thus $(U^2|X|(h^+ + h^-), h^+ + h^-) \ge 0$ for all h^+ in H^+ and h^- in H^- . Since Dom $X = H^+ + H^-$ by virtue of Lemma 1, $U^2|X|$ is a positive selfadjoint operator on Dom X. The uniqueness of the polar decomposition implies $U^2 = I$.

3. Conjugate symmetric involutions. A transformation Q on H that satisfies $Q(\alpha f + \beta g) = \alpha^* Q(f) + \beta^* Q(g)$ is called a *conjugation* if $Q^2 = I$ and (Qf, Qg) = (g, f) for every f and g in H. We remark in passing that theoretical physicists have found conjugation operators to be useful tools for studying time reversal symmetry in quantum mechanics [2, p. 187]. If there is a conjugation Q such that $X = QX^*Q$, we shall call X conjugate selfadjoint. If $\Gamma(X) \subset \Gamma(QX^*Q)$, then X is said to be conjugate symmetric. Commutativity properties of bounded conjugate selfadjoint operators are treated in [4], but little appears to be known about their general structure.

LEMMA 2. Let X be a closed, densely defined linear involution having the property that $\Gamma(X) \subset \Gamma(QX^*Q)$. If X = U|X| is the polar representation for X, then $UQ(\text{Dom }X) \subset \text{Dom }X$ and $\text{Dom}|X| \subset \text{Dom }Q|X|^{-1}Q$.

PROOF. An application of Theorem 1 immediately yields the identity $UXU = X^*$. Therefore $\Gamma(X) \subset \Gamma(QUXUQ)$, and it follows that $UQ(\text{Dom }X) \subset \text{Dom }X$. Since Dom X = Dom|X| and $Q|X|^{-1}Q = QU|X|UQ$, we further have $\text{Dom}|X| \subset \text{Dom}(Q|X|^{-1}Q)$.

LEMMA 3. Let X denote the conjugate symmetric involution introduced in the previous lemma, and let $V = Q|X|^{-1}Q|X|^{-1}$. Then V is a densely defined linear transformation having the property that $\text{Dom } V = \text{Dom } X^*$ and $\Gamma(V) \subset \Gamma(QUQU)$.

PROOF. Substituting $X^* = U|X|^{-1}$ in the defining equation for V, we get $V = QUX^*QUX^*$. This immediately implies that $\operatorname{Dom} V \subset \operatorname{Dom} X^*$. But $\Gamma(X) \subset \Gamma(QX^*Q)$ by hypothesis, so we have $\Gamma(QUQUX^{*2}) = \Gamma(QUQXUX^*) \subset \Gamma(V)$. Since X^{*2} is the identity on $\operatorname{Dom} X^*$, it follows that $\operatorname{Dom} V = \operatorname{Dom} X^*$ and $\Gamma(V) \subset \Gamma(QUQU)$ because QUQU is a unitary transformation defined on all of H.

THEOREM 2. If X is a closed, densely defined linear involution which is conjugate symmetric, then X is conjugate selfadjoint.

J. W. MOELLER

PROOF. Let K be the linear transformation given by $K = 2|X| + Q|X|^{-1}Q$. According to Lemma 2, Dom K = Dom|X|, and we can thus write $K = (2 + Q|X|^{-1}Q|X|^{-1})|X|$. An application of Lemma 3 now gives K = R|X|, where R = 2 + QUQU. Since R is a bounded linear transformation on H whose spectrum $\sigma(R)$ has the property that $\sigma(R) \subset \{z \mid \text{Re } z \ge 1\}$, it follows that K is a closed linear operator with Dom K = Dom|X|. Moreover, since $\Gamma(Y^* + Z^*) \subset \Gamma((Y + Z)^*)$ for densely defined linear transformations [7, p. 300], we obtain $\Gamma(K) \subset \Gamma(K^*)$. Hence $\Gamma(R|X|) \subset \Gamma(|X|R^*)$ and it follows that $\Gamma(R^*) \subset \Gamma(R^*) \subset \Gamma(R^*)$. Since $\Gamma(R^*) \subset \Gamma(R^*) \subset \Gamma(R^*) \subset \Gamma(R^*) \subset \Gamma(R^*)$ and it follows that $\Gamma(R^*) \subset \Gamma(R^*) \subset \Gamma(R^*) \subset \Gamma(R^*)$. Since $\Gamma(R^*) \subset \Gamma(R^*) \subset \Gamma(R^*) \subset \Gamma(R^*) \subset \Gamma(R^*) \subset \Gamma(R^*)$ and invariant subspace for $\Gamma(R^*) \subset \Gamma(R^*) \subset \Gamma(R^*)$ and invariant subspace for $\Gamma(R^*) \subset \Gamma(R^*) \subset \Gamma(R^*)$. Consequently $\Gamma(R^*) \subset \Gamma(R^*) \subset \Gamma(R^*)$, and we conclude that $\Gamma(R^*) \subset \Gamma(R^*) \subset \Gamma(R^*)$. This last equation implies

$$UQUQ(\text{Dom }X) = \text{Dom }X = QUQU(\text{Dom }X),$$

so we finally have X = QX * Q.

COROLLARY. If X is a conjugate symmetric linear involution and Y is a closed densely defined linear operator having the property that $\Gamma(Y) \subset \Gamma(X)$, then Y = X.

PROOF. From the hypotheses we at once find

$$\Gamma(Y) \subset \Gamma(X) \subset \Gamma(QX*Q) \subset \Gamma(QY*Q).$$

Consequently QY *Q = Y by virtue of Theorem 2, and this implies X = Y.

REFERENCES

- 1. N. Dunford and J. T. Schwartz, Linear operators. Part II: Spectral theory, Wiley, New York, 1963.
- 2. L. M. Falicov, Group theory and its physical applications, Univ. of Chicago Press, Chicago, Ill., 1966.
- 3. T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966.
- 4. J. Moeller, A double commutant theorem for conjugate selfadjoint operators, Proc. Amer. Math. Soc. 83 (1981), 506-508.
 - 5. J. von Neumann, Uber adjungierte Funktionaloperatoren, Ann. of Math. 33 (1932), 294-310.
 - 6. H. Radjavi and P. Rosenthal, Invariant subspaces, Springer-Verlag, New York, 1973.
 - 7. F. Riesz and B. Sz.-Nagy, Functional analysis, Ungar, New York, 1955.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT CHICAGO, CHICAGO, ILLINOIS 60680