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MINIMAL SOLUTIONS OF THE HEAT EQUATION

AND UNIQUENESS OF THE POSITIVE CAUCHY PROBLEM

ON HOMOGENEOUS SPACES

A. KORANYI1 AND J. C. TAYLOR2

Abstract. The minimal positive solutions of the heat equation on A' X (-00, 7") are

determined for X a homogeneous Riemannian space. A simple proof of uniqueness

for the positive Cauchy problem on a homogeneous space is given using Choquet's

theorem and the explicit form of these solutions.

Introduction. A minimal solution of a linear elliptic or parabolic equation is a

nonnegative solution u such that, whenever 0 < v < u is another solution, v = Xu

with some constant 0 < À < 1. By Choquet's theorem all positive solutions are

convex linear combinations of minimal solutions.

It is well known that the minimal solutions of the heat equation Ah = u, of R" are

the functions exp(||y\\2t + (x, y)) with y e R". In the present paper we generalise

this result to a class of Riemannian manifolds with bounded geometry that includes

all homogeneous Riemannian manifolds. Writing A for the Laplace-Beltrami opera-

tor, we show that all minimal solutions of the equation Aw = u, are of the form

u(p, t) = e°"f(p) with/a minimal solution of the equation A/= af. We note that,

in the particularly interesting case of noncompact Riemannian symmetric spaces,

these functions/are explicitly known ([8], also [7]).

The proof of our result consists of a simple application of Moser's parabolic

Harnack inequality; it is inspired by the simple proof of the theorem of Karpelevic

given by Y. Guivarc'h [7]. As we shall point out, the method applies also to a large

class of parabolic equations on R".

As an application of our main result we give a simple proof of the uniqueness of

the positive Cauchy problem for the heat equation on homogeneous spaces. This

proof avoids the growth estimates used in the classical arguments for parabolic

equations on R".
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Harnack's inequality for parabolic operators on Rd. Let L be a second order linear

uniformly elliptic operator on Rd. Assume that either

o)       *-|^(e-«<»)^)+é¿w^;

or

d

(2) Lu =    £  **A*)ttfc; + I *,(*)¿-+ <**)«•

where the coefficients are measurable, for some X > 0, (1/A)||£||2 < Y,aij(x)£j£J <

X||£||2 for all £ g Rd, and, for some n > 0, ||Z>,|| < » and -ju. < c < 0. Let =S?(A, /t)

denote the collection of operators L satisfying these conditions. When L is of type

(1), a (weak) solution u of Lu = u, on a cylinder ñ X (0, 7") = D, ß open in Rd, is a

function such that ||«(-,/)||2 is uniformly bounded in t and has distributional

derivatives ux   with t ~* \\ux (•, t)\\2 G L2(0, T) such that for all test functions

d d

J j<p,udxdt=   E  J J <f>XiQijUXi dxdt- £ j J <P¿,"^, <*x ¿i
1,7-1 /=1

(see [14]).

For L of type (2), a (weak) solution m of Lu = u, is a function in Lí/+1(ñ), whose

distributional derivatives ux x, ux. and ur are in LJ+1(fl), such that Lw = u, a.e. on Z)

(see [10]).

In both cases u can be assumed to be continuous: in case (1) this was proved by

Trudinger [14] and in case (2) it follows from the Sobolev embedding theorem.

Let u > 0 be a solution of Lu = u, on D - 5(0; 1) X (0, T) which is continuous

on D (this is automatic if L is of type (2)), where 5(0; r) = {x g Rd\ \\x\\ < r).

Trudinger's Harnack inequality [14] in case (1) (an extension of Moser's same

inequality [12]) and Krylov and Safonov's Harnack inequality [10] in case (2) state

that there is a constant C = C(T, X, ju,, 6) such that

u(0, T) > Cu{x,0T)    for all x, ||*|| < 1/2.

Let u be a solution of the equation Lu = ur, L g £C(X, /x), and let w(ax, a2t) =

u(x, t), a > 1. Then there is an operator La G =£?(A, ju,) such that Law = wt on the

appropriate domain c R^ x R. If y = ax the coefficients of La are aij(a~1y),

a~xbj(a~xy) and a~2c(a~ly). Consequently, if u ^ 0 is a solution of the equation

Lu = u, for L g <£(X, ¡i), on Da = 5(0; a"1) X (0, a~2T) and continuous on Da,

one has

«(0, a2T) > Cu(x, Oa~2T)    for all x, \\x\\ < (2a)"1.

These Harnack inequalities are valid even if the coefficients are also time

dependent and if operators more general than those in divergence form (1) are

considered (cf. Aronson [2], Trudinger [14]).
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Minimal solutions of parabolic equations on Rd. Let L be an operator of the type

considered in §1 and let u ^ 0 be a solution of the parabolic equation Lu = u, on

RJ X R. It is said to be minimal if whenever v is any other solution with 0 < u < m

then v = Xu for some X, 0 < X < 1. A minimal solution of Lm = au, a g R is

defined similarly.

Theorem 1. Let u ^ 0 be a minimal solution of the parabolic equation Lu = u, on

RJ X (-co, T), where L g J?(X, ¡x). Then, for some constant a, u(x, t) = e°"f(x),

where f is a minimal solution of the elliptic equation L<p = acp.

Proof. Since the coefficients of L are independent of time, for any a > 0,

v(x, t) = u(x, t — a) is also a solution of the equation Lu = u, on Rd X (-oo, T).

Let 0 < a < 1. Harnack's inequality implies that there is a constant Cl = C,(a)

such that v < C,w. By minimality, there is a constant C = C(a, u) such that

v = C(a, u)u.

Hence,

u(x,t) - u(x,t - a) = {1 - C(f, «)}«(*, r).

Let <p g <<f0°°(Rí/ x (-oo, T)). Then, for small a,

ff{<p(x, t) - <p(x, t + a)}u(x, t) dx dt

= {1 - C(a, «)} f fu{x, t)y(x, t) dxdt.
J J

Consequently, -a = (d/da)C(a, w)|a_0 exists and -ffcp^dxdt = affcpudxdt. As

a result, ut = au. Since the (weak) solutions are continuous, for each x, u(x, t) =

ea'f(x)forallt.

The function/is > 0 and a (weak) solution of L<p = a<p since Lw(x, t) = e°"Lf{x).

If 0 «s g < / and Lg = ag then i>(x, /) = e°"g(x) is a solution of Lv = v,. Since

0 < v < u it follows from the minimality of m that/is minimal.

Remarks. (1) In the case of the classical heat equation ¿A« = u„ the minimal

solutions on Rd X R are well known to be the functions Ky(x, t) = exp{|| v/||2r/2 +

(x, y)}, y g Rd. This also follows as a consequence of Theorem 1, since Au = lau

has a positive solution if and only if a > 0; and the minimal solutions when a > 0

are the exponentials A/(x, i) = expv/2a^(A:, b), b g 5¿_1 (cf. [9]).

(2) Agmon [1] has determined the minimal solutions of Lq> = am when L is in

divergence form and has periodic coefficients. Hence, in this case the minimal

solutions of the parabolic equation Lu = w, are computed by Theorem 1.

Minimal solutions of the heat equation on a homogeneous space. Let A be a

Riemannian manifold with a transitive isometry group; in other words, let A be a

homogeneous Riemannian space. Denote by Ax = A the Laplace-Beltrami operator

on X. A function u(p, t), which is (£2 in p and 'if1 in t, is a solution of the heat

equation if Au = ut. A positive solution u is said to be minimal if 0 < v < u and

Au = v, implies v = Xu.
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Theorem 2. Let u > 0 be a minimal solution of the heat equation on X X (-oo, T),

reR. Then, for some constant a, u( p, t) = ea'f(p), where / G <g2( X) is a minimal

solution of the equation A/= af. Consequently, u(p, t)> 0 for all (/>,/) G A X

(-00,7).

Proof. Let a > 0 and v(p, t) = u(p,t - a). Then v is also a solution of the heat

equation on A X (-oo, T).

Let p0 g A. Then there is a chart (U, cp) at p0 and a uniformly elliptic operator L

on RJ of type (1) such that

(Lw-w,)(x,t) = (Au-u,)(p,t)

if x = <p(p), p g U, t < T and w(x, t) = u(p, t). Hence, by Harnack's inequality

(see above) there is a constant C, such that u( p0, t — a) = v(p0, t) < C,m(/>0, t) for

all positive solutions u.

Let g be an isometry of A. Then w(p, t) = u(g~l ■ p, t) is again a solution. If

g"1 • p = p0, it follows that u(p, t - a) = v(p, t) < CYu{p, t) for all t < T and all

positive solutions u. Since the isometry group is transitive, for all p there is an

isometry g with g ■ p0 = p. Hence, v ^ C,w.

The rest of the proof is a repetition of the proof of Theorem 1 except for the last

assertion.

Let / > 0 be such that A/ = af. Since A is assumed connected, it suffices to show

that the set of zeros of / is open. This is a local question and is solved by Hopfs

maximum principle (cf. [13, Theorem 5, p. 61, and Theorem 6, p. 64]).

Remarks. (1) In the case of a noncompact symmetric space, the set of constants a,

for which A/ = af has positive global solutions on A, is the interval [-|p|2, + oo),

where p is one-half the sum of the positive roots [8]. In this case, for any a s= -\p\2

the minimal solutions of the equation A/ = af have been computed by Karpelevic

[8]. Hence, Theorem 2 computes the minimal solutions of the heat equation on

A X R or A' X (-oo, T) for any noncompact symmetric space A. This settles a

question raised in [11].

(2) The transitivity of the isometry group is only used to show that the local

Harnack constant for a set of the type B(x, r) X (tt, t2), where B(x, r) is an open

ball about x, does not depend on x. As a result, for any positive solution u of the heat

equation onlx (T,, T2) there is a constant C = C(a) such that u(x, t — a) ••$

C(a)u(x, t) for all x G A and 7\ < t — a < t < T. A Riemannian manifold satisfy-

ing this condition will be said to have property (H). Obviously, the proof of the

theorem applies to manifolds with property (H).

(3) As pointed out to us by N. Varopoulos, this class of manifolds includes all

those manifolds with "^-bounded geometry in the sense of Cheeger et al. [3] (see p.

33). This is because in normal coordinates at x the heat equation is Lu = u, with L

of type (1) with X and /x bounded and independent of x.

(4) It is also obvious that the class of manifolds with property (H) includes N if M

satisfies (H) and <jd: M -* N is surjective with AM(u°<p) = ANu°<p for all u g

(€2{N). In particular, if TV = M/T, where T is a closed subgroup of the isometry

group, then N satisfies (H) if M does.
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Uniqueness for the positive Cauchy problem. Let A be a smooth manifold and let

L — 3/3? be a second order parabolic linear operator on A X (0, T). The positive

Cauchy problem will be said to have a unique solution if the following is satisfied:

when u > 0, Lu = u,, u is continuous on A X [0, T) and u(x, 0) = 0 for all x g A,

then u = 0.

In the case X = Rd the question of uniqueness has been extensively investigated

for operators of the class ¿£{X, ¡i) where the coefficients may also depend on t. For

L in divergence form (1) (and for even more general L), Aronson [2] showed that the

positive Cauchy problem has a unique solution. For L in the form (2), Friedman [6]

showed the same result when the coefficients were locally Holder continuous. The

arguments used involve first obtaining growth estimates for a nonnegative solution.

In the case of a rank-one noncompact symmetric space A, growth estimates for

solutions of the heat equation are easy to make. Once the rank is greater than one,

difficulties arise. As will now be shown, it is possible to completely bypass the

question of growth estimates, provided one is prepared to use the Choquet theorem

of integral representation for the convex cone of nonnegative solutions of the heat

equation.

Theorem 3 (Uniqueness of the positive Cauchy problem). Let X be a

homogeneous Riemannian space, or, more generally, a Riemannian manifold with

property (H). Let u > 0 be a solution of the heat equation Au = w, on X X (0, T). If u

is continuous on X X [0, T) and u(x, 0)for all x g A, then u = 0.

Proof. Extend u to A X (-oo, T) by setting u(x, t) = 0 for t < 0. The resulting

continuous function is a solution of the heat equation. To see this it suffices to note

that because of the maximum principle a continuous function u is a solution if and

only if it agrees with the solution of the first boundary value problem on any smooth

cylinder Q = Q, X (?,, t2) with Q c X X (-co, T), where the boundary value is u

restricted to the parabolic boundary dpQ = 3fi X [?,, (2]UßX {h}- Alternatively,

one may establish that « is a solution by using a weak solution argument (cf.

Aronson [2]).

The convex cone of nonnegative solutions of the heat equation on A X (-co, 7") is

a weakly complete metrisable cone in the topology of uniform convergence on

compact sets (cf. [4 and 11]). Hence, every element is the barycentre of a measure

carried by the extreme points of a compact convex subset (cf. [4 and 11]). It follows

from Theorem 2 that u = 0 (as a solution on A X (-oo, T)) since none of the

minimal functions ever vanish.

Remarks. (1) The proof applies to those parabolic operators L — 3/3? of §1 that

give rise to strict harmonic spaces in the sense of Bauer. This includes all L of type

(1) (even the operators considered by Aronson) and those L of type (2) with

time-independent Holder continuous coefficients (cf. [4, Exercise 3.3.5]). However,

the results obtained here are not as general as those of Aronson [2] and Friedman [6]

since the coefficients must be time independent.

(2) The hypotheses on u can probably be relaxed so as to require only that

lim,,0w(x, ?) = 0 for all x. This is the case for the classical heat equation on
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R" X R+. The following argument is due in part to a suggestion by P. Koosis. By

Widder's theorem u ^ 0 is represented by measure ¡u. The measure du + dx repre-

sents u + 1 and

lim--(x, t) — 0   for all*.
uo « + 1

Hence, u/(u + 1) tends to zero parabolically for all x. It follows from Doob's

parabolic convergence theorem [5] that the Radon-Nikodym derivative of da. with

respect to dp, + dx is d¡i + dx-a.e. zero. In other words, dp is singular with respect to

du. + dx and so u = 0.
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