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VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS

AT THE BOUNDARY '

MICHAEL G. CRANDALL AND RICHARD NEWCOMB

Abstract. When considering classical solutions of boundary value problems for

nonlinear first-order scalar partial differential equations, one knows that there are

parts of the boundary of the region under consideration where one cannot specify

data and would not expect to require data in order to prove uniqueness. Of course,

classical solutions of such problems rarely exist in the large owing to the crossing of

characteristics. The theory of a sort of generalized solution—called "viscosity

solutions"—for which good existence and uniqueness theorems are valid has been

developed over the last few years. In this note we give some results concerning parts

of the boundary on which one need not know (prescribe) viscosity solutions to be

able to prove comparison (and hence uniqueness) results. In this context, this

amounts to identifying boundary points with the property that solutions in the

interior which are continuous up to the boundary are also viscosity solutions at the

boundary point. Examples indicating the sharpness of the results are given.

0. Introduction. We begin by recalling an important notion of generalized solu-

tions for scalar nonlinear first order partial differential equations. Let Kbe a subset

of RM, and let F: K X R X RM -» R be continuous (i.e., F g C(K X R X RM)). A

function m g C(K) is called a viscosity solution of F(y, w, Du) < 0 on K if, for each

real-valued function tp which is continuously differentiable in a neighborhood of K

and each local maximum z g K of u - <p relative to K, one has

(0.1) F(z,u(z), D<p(z)) < 0.

Here Dtp = (<p ,...,<pVw) is the gradient of <p. We will use the notation C1(K) to

mean the set of functions which are defined and continuously differentiable in a

neighborhood of K. Similarly, a viscosity solution of F(y, u, Du) > 0 in K is a

u g C(K) such that, for every <p g C1(K) and local minimum z G K of u — <p

relative to K, one has

(0.2) F(z,u(z),D<p(z))>0.

A viscosity solution of F = 0 on K is a function which is a viscosity solution of both

F < 0 and F > 0. We also call viscosity solutions of F < 0 ( F > 0) viscosity

subsolutions (respectively, supersolutions) of F = 0. Observe that these notions do
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not require u to be anywhere differentiable. Indeed, although we will not do so here,

there are circumstances when it is appropriate to require only a semicontinuity of u

rather than continuity. The set K is also general—we have not yet restricted it in any

way—but we will primarily be concerned with cases in which K satisfies S2 c K c Í2,

where ß denotes an open subset of Rw, Q, is its closure, and 3fi is its boundary.

The notion of viscosity solutions has become important in providing a theoretical

basis for the interaction between equations of Hamilton-Jacobi type, control theory,

and differential games. The first uniqueness theorems for this notion are proved in

Crandall and Lions [4]. However, a more complex equivalent formulation is taken as

basic in [4], and Crandall, Evans, and Lions [3] give direct proofs with the simpler

formulation. Lions [8] and Crandall and Souganidis [6] provide a view of the scope

of the theory and the references to much of the recent literature.

While one primarily had in mind the case in which K is open in the theory

referred to earlier, [4, Remark 1.13] pertained to the general case. Moreover, in [4,

Proposition V.l] it is proved that a viscosity solution of

(0.3) u, + H(x, t, u, Du) = 0    onOx(OJ),

where O is an open subset of R* and Du = (ux ,... ,ux ) is the spatial gradient of u,

which happens to extend continuously to O X (0, T], is also a viscosity solution on

the set O X (0, t\. See also [3, Lemma 4.1]. Of course, (0.3) is subsumed under the

general case by putting M = N + \,yx= xx,... ,yM_ x = xN, and yM = t. and

F(y,u,(px,...,pN + x)) = pN+x + H{(yx,...,yN),yN+x,u,{px,...,pN)).

It is further remarked in [4] that this extension property depends on a certain

monotonicity of the equation in the direction of the normal to the domain, and this

is the point we examine in some generality in this note.

Our current interest in this point is partly generated by recent remarks of R.

Jensen [7], who had the idea of formulating the uniqueness theorem on arbitrary

closed sets, a formulation with attractive features. Our main results, which we

introduce and prove in §1, are criteria which identify boundary points at which an

inequation is automatically satisfied in the viscosity sense if it holds in the interior of

a set, extending the result for (0.3). Examples establishing the sharpness of the result

are also given, and we formulate corresponding uniqueness theorems. We would also

like to mention the recent paper [10] by H. Soner, which the reader may find of

interest.

1. The extension theorem and examples. In this section Q denotes an open subset

of RM and 3ß is its boundary. We consider sub- and supersolutions u g C(Q) of an

equation F = 0 on fi and define a subset IF of 3S2 (which we call the part of 3ß

irrelevant for F). In nice situations u is then a sub- or supersolution (as appropriate)

of F = 0 on ß U IF. We are concerned about how general u, ß and F may be and

still have the result hold. With this in mind, we make the definitions for a general

open set ß. We need to define an appropriate set of normals to a point z G 3ß. The

open ball of radius r centered at z in RM will be denoted by Br(z), i.e.,

BÂZ) = (jeR": \y - z\< r).
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Definition 1. Let z g 3ß. Then v g Rm\ {0} is an inward normal to ß at z if

there is a À > 0 for which the open ball of radius \Xv\ centered at z + Ay is contained

in ß, i.e.,

5|X„,(z + Xv)cz a.

The set of all inward normals to ß at z g 3ß is denoted by NQ(z). Another

description of Na(z) can be given the following way: For each y g Rm there are

points of 3ß which are nearest y. Let Py be the set of such points:

(1.1) Py = {z g 3ß: \y - z|<[y - w\ for w g 3ß}.

Then

(1.2) Na(z)= {X(y-z):yeQ,zePy,X>0},

that is, the inward normal vectors are just those in the directions from z to points in

ß for which z is a nearest point in 3ß. We remark that there are a variety of choices

for the definitions of "normal" and "tangent" vectors to an arbitrary set. We are

using a notion appropriate for our purposes—as regards others and relationships

among them, see Clarke [2] and Aubin and Ekeland [1], The reader can easily

convince himself that Na(z) may be empty, and it may be RM \ {0} when z g 3ß.

Definition 2. Let z g 3ß. Then z g If if there is an r > 0 such that for all

y G 3ß n Br(z), all v g Na(y), and all (u, p) g R x RM,

(1.3) F(y,u,p + p)^F(y,u,p).

In other words, z is irrelevant for F if F is nonincreasing in the inward normal

directions in a neighborhood of z. Of course, IF depends on ß as well as F, but we

will not need to indicate this in this note.

Remark. Observe that the set of vectors v for which (1.3) holds for all p g Rm is

closed under addition. Using this and the continuity of F we deduce that if z G IF,

then F(z, u, p + v) < F(z, u, p) for all v in the closed convex hull of

limsupl._..iVa(_y), which may well be a much larger set than Na(z).

We would like to prove that if u g C(ß) is a viscosity sub- or supersolution of

F = 0 in ß, then it is also a viscosity sub- or supersolution in ß U IF, but this is not

true without further restrictions. To formulate our first result we still need to define

"regular points" of 3ß. These will be defined by properties of the function

(1.4) d(y) = inf{\y - w\2:w<e 3ß},

which is the square of the distance from y to 3ß. Associated with d(y) is the

mapping P of (1.1). Indeed,

Py = ( w G 3ß: d(y) = \y - w\2).

If Py is a singleton (i.e., there is only one point in 3ß nearest y), we will abuse

notation and also use Py to denote this closest point.

Definition 3. Let z g 3ß. Then z is regular for ß if there is an r > 0 such that if

y g Br(z) n ß, then Py is a singleton, d is differentiable aty, and

(1.5) Dd(y) = 2(y-Py).



286 M. G. CRANDALL AND RICHARD NEWCOMB

Remark. It is a standard and elementary exercise to show that if ß is of class C2

near z g 3ß, then z is regular for ß. In fact, d is differentiable at y and (1.5) holds

exactly when Py is a singleton (e.g. [2]).

Theorem 1. Let F g C(ß XRX RM). Let z g IFbe regular for ß, u g C(ß U IF)

be Lipschitz continuous near z, and u be a viscosity solution of F < 0 ( F > 0) on ß.

Then u is also a viscosity solution of F < 0 {respectively, F > 0) on ß U {z}. /«

particular, if u is a viscosity solution of F = 0 on ß, ?/zen ?'? iy a viscosity solution on

ß U {z}.

Before proving this result, we give two examples. The first shows that the

restriction to Lipschitz continuous «'s is necessary in this generality, while the

second shows that if z is not regular for ß the result may fail.

Example 1. Consider the situation ß = (0,1) and

F(x, u,u') = xaw' -1=0,

where 0 < a < 1. In this example, 0 G IF, since F(0, u, p) is independent of p and

hence is nonincreasing in all directions. Moreover, 0 is clearly regular for ß. The

function u = jc(1~a)/(l — a) is a classical (and hence viscosity) solution of F = 0 on

ß. However, u is not Lipschitz continuous near 0. If <p(x) = x, then u — <p has a

minimum relative to ß = [0,1] at 0 but F(0, t/(0), <p'(0)) = -1 < 0, so u is not a

viscosity supersolution on  [0,1).

Example 2. Let M = 2 and (x, y) denote points of R2. Put

ß= {(x,y) g R2:0 <y < x2,0 < x < l)U    ,7, J j

and

(1.6) F(x,y,u,ux,uv) = ux+3{y/y~)uv.

We have

(0 if(x,y) = (0,0),

M(x,y))= /{A(2x,-1):a>0} iî(x,y) = (x,x2),0<x< 1,

U(0,A):X>0} iî(x,y) = (x,0),0<x<l,

and it is straightforward to check that (0,0) g If. For example, F is nonincreasing in

a direction v = {vx, vv) at a point (x, x2) exactly when (using the linear form (1.6) of

F)

vx + 3(/x )vv = vx + 2>xvv < 0.

For the normal v = (2x, -1) this quantity is 2x — 3x < 0. Now u = 0 is a Lipschitz

continuous viscosity solution of F = 0 in ß. The function 0 — x = -x has a

maximum on ß at (0,0), but F(0,0, (1,0))= 1 > 0, so 0 is not a viscosity subsolution

on ß U (0,0). (We conclude that (0,0) is not regular and the requirement of

regularity cannot be relaxed.)

Proof of Theorem 1. Let u g C(ß U IF) be (locally) Lipschitz continuous and

a viscosity solution of F < 0 in ß. Let ze/fbe regular for ß. Put ñ  = ß U {z}. If
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<p G C'(ß.) and m - m has z as a local maximum relative to ß, (and hence relative to

a neighborhood of z in ß), we need to prove that

(1.7) F(z,M(z),Z)(p(z))<0.

Without loss of generality we may assume that for each small r > 0,

(1.8) "(y) - <p{y) < u(z) - f(z)    iory g ß and \y - z\= r,

that is, the maximum is strict. This is because <p can be perturbed tom(>>) + |.v-z|2,

which makes z a strict maximum without affecting D<p(z). Let e > 0. We claim that

(1.9) %(y) = u(y)-<p(y)-e/d(y)

has a local maximum j(eß relative to ß satisfying

(1.10) ye~>z   ase^O.

Indeed, because u — <p is continuous, for each small r > 0 we can find w g Br(z) D ß

such that (1.8) holds with w in place of z:

(1.11) u(y) - q>(y) < u(w) - <p(w)    for v G ß and \y - z\ = r.

Now consider ^ in the set Br(z) n ß. We will argue informally, as it is best if the

reader convinces himself of the validity of what follows: <ire tends to -oo on 3ß. On

the other hand, we can guarantee that %(y) < ^(w) on\y — z\ = r away from 3ß

by choosing e small, because of (1.11), and we can make ^E(w) as close as we please

to u(w) - <p(h>). The existence of local maxima >>E satisfying (1.10) follows, as does

the fact that we can guarantee

(1.12) *E(vE)-M(z)-<p(z).

Next let zE be the nearest point toye in 3ß: zE = Pye. Then, by the assumption that u

is a viscosity subsolution in fi, the regularity of z, and (1.5),

(1.13) F(y„ u(yc), D<p(ye) - 2e(ye - zt)/{d{yt)f) < 0.

With future uses in mind, we put

(1.14) Pe = D<p(ye),    Ve=(ye-ze),   Xe = 2e/(d(ye)f,

and write (1.13) as

(1.15)

F{y» u{yt), pt - Xeve) - F(ze, u(yt), pt - Xei>c) + F(zE, u(ye), pe - Xcve) < 0.

We treat the various terms of this inequality: First, since u is Lipschitz continuous,

(1.16) \pt-Xtvt\^L,

where L is a Lipschitz constant for u in the neighborhood of z in which yc lies. (See

[4, Lemma II.3].) Since ye, zt -* z, we may use (1.16) and the continuity of F to

conclude that the difference comprised by the first two terms in (1.15) tends to 0

with e. As regards the last term, observe that ze ^> z and ve g Nü(ze) imply, because

z G IF, that

(1.17) F(zc, u(yt), Pe - AE,E) > F(ze, u(yt), Pt).
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Using (1.17) and the prior remark together with (1.15), we may pass to the limit as

e -* 0 to find (1.7) as desired. The case of supersolutions is handled in a parallel

way, and the case of solutions follows from the sub and super cases.

At this point we have not even recovered the results for (0.3) mentioned above, as

they do not require Lipschitz continuity of u. By Example 1 it is clear that further

restrictions are needed on F in order to deal with more general u 's. Looking at the

proof of Theorem 1 and Example 1 will make the condition we are about to

formulate more palatable.

Definition 4. Let z g If. Then z is regular for F if for all sequences z„ g 3ß and

yn G (Na(zn) + zn) ni! convergent to z and Xn > 0 satisfying

(1.18) Mvv-l ~*°
we have

(1.19)    liminfF(j„, u, p - Xn(yn - zj) - F(z„, u, p - Xn(y„ - zn)) > 0

uniformly for bounded u ana p.

In particular, the continuity requirement we are imposing is laid only on the

behaviour of F near z and in appropriate directions. We have

Theorem 2. Let F g C(ß xR x RM). Let z g If be regular for ß and F, and

u G C(ß U IF ) be a viscosity solution of F < 0 (F > 0) on ß. Then u is also a viscosity

solution of F < 0 ( respectively, F > 0) on ß U {z}. In particular, if u is a viscosity

solution of F = 0 on ß, then it is a viscosity solution o/ißU {z}.

Proof. The proof follows the proof of Theorem 1 exactly up to the discussion of

(1.15). With the notation (1.14), the relation (1.16) no longer holds for any L.

However, pe is bounded and if we observe that

\c\yf = XF\yi-zf = 2e/d(yt)^0,

as follows immediately from (1.12) and the definition of fte, then the assumption

that z is regular for F may be used to claim that

liminf (F(yt, u(ye), Pe - \tpt) - F{zt, u{ye), pt - Xtvc)) > 0,
f-»0

and the proof is completed as before.

Example 3. We may use the situation of Example 1 to show that the "rate" in

(1.18) is sharp among power laws. Indeed, with the notation of Example 1, if z„ = 0

for all n and yn is a sequence of positive numbers convergent to zero which satisfies

^n\y„- z„\ +a = ^„(yn)1+a -*of

we have

Hy„, u,p- Xnyn) - F(0, u,p- X„y„) = y«p - Xnyl + " - 0

uniformly for bounded/). That is, the assumptions of Theorem 2 are satisfied except

that the exponent 2 in (1.18) is replaced by 1 + a. Yet we know that the viscosity

solution Xa "a)/(l - a) of F = 0 on (0,1) is not a supersolution on  [0,1).
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Remarks. The proofs of Theorems 1 and 2 couple the general line of argument

used in the special case (0.3) in [4 and 3] with the use of the distance function to

replace the particular construction used in this case. Use of the distance function is

frequently advantageous in proofs in this subject (see, for example, Lions [8, 9] and

Jensen [7]). By the way, it is an elementary (and standard) exercise to show that

u(x) = (d(x))l/2 is a viscosity solution of \Du\2 = 1 in ß whether or not 3ß is

smooth. It is the only viscosity solution of this equation vanishing on 3ß (see [8 and

4]).

Finally, we formulate uniqueness theorems corresponding to Theorems 1 and 2.

There are many possible variants of these results, and these are chosen to simply

illustrate the interaction between Theorems 1 and 2 and uniqueness. Corresponding

to Theorem 1 we have

Theorem Ul. Let ß be a bounded open subset of RM. If/FeC(ÛxRxRM)

satisfy

for R > 0 there is a strictly increasing function yR such that

Yk(0) - 0andF(y, u, p) - F(y, v, p) > yR(u - v)fory G ß,

p G RM,andu,v G [-R, R],

Let u, v g C(ß) be Lipschitz continuous, u be a viscosity solution of F < 0, and v be a

viscosity solution of F > 0 on ß. Let each point of IF be regular for ß. Let u < v on

3ß \ IF, then u < v in ß.

Corresponding to Theorem 2 we have

Theorem U2. Let ß and F satisfy the assumptions of Theorem Ul. In addition,

assume that each point of IF is regular for ß and F and that for each R there is a

continuous function gR:  [0, oo) -»   [0, co) with gR(0) — 0 such that

(1.20)    F(x, u, X(x - y)) - F(y, u, X(x - y)) > gR(X\x - y\2 +\x - y\)

for x, y G ß, X > 0, and \u\ ^ R. Let u, v G C(ß), u be a viscosity solution of F < 0,

v be a viscosity solution of F > 0, and u ^ v on 3ß \ IF. Then u < v inSl.

Remark. Condition (1.20) on F is a weakened version of a uniqueness condition

used in [4]. The relevance of such a "one-sided" condition was pointed out by R.

Jensen. See also [5] for uniqueness (in unbounded domains) and existence using this

condition, as well as a generalization of it.

The proofs of Theorems Ul and U2, given Theorems 1 and 2, are routine and will

not be given here. See, however, Jensen [7] concerning general formulations of

results on closed sets.
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