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REGULAR POLYGON SOLUTIONS OF THE JV-BODY PROBLEM

L. M. PERKO AND E. L. WALTER

ABSTRACT. In 1772, Lagrange showed that three masses at the vertices of

an equilateral triangle, rotating about their common center of mass with an

appropriate angular velocity, describe a periodic solution of the three-body

problem. In this paper it is shown that for JV > 4, JV masses at the vertices of

a regular polygon, rotating about their common center of mass with an appro-

priate angular velocity, describe a periodic solution of the A^-body problem if

and only if the masses are equal.

1.   Introduction and results.  For N > 2, the equations of motion of the

planar iV-body problem can be written in the form

(1) '¿k = - V] rrij r—-¿j,
¿? \Zk - Zj\3

where zk is the complex coordinate of the fcth mass mk in an inertial coordinate

system; cf. [5, p. 95]. In equation (1) and throughout this paper, unless otherwise

restricted, all indices and summations will range from 1 to N.

Let pfe denote the JV complex iVth roots of unity; i.e.,

(2) ft =«**/*.

This equation will also serve to define pk for any real number k. The center of mass

of N masses mk located at the vertices pk of a regular polygon inscribed in the unit

circle is then given by

zq — y    rtijPj IM

3

where M = V • rtij. The functions describing their rotation about zq with angular

velocity oj are then given by

(3) zk(t) = (pk - z0)eL>t.

There is no loss of generality in assuming that the regular polygon is inscribed in

the unit circle since the ÏV-body problem (1) is invariant under the transformation

t —> t¡o?l2, z —► z/a which reduces the functions a(pk - zo)liJJt to the functions

defined in (3).

In 1772, Lagrange [2] established his "equilateral-triangle solutions" of the 3-

body problem. His result is equivalent to the following theorem; cf. [5, p. 94].

THEOREM    (LAGRANGE). For N = 3 and mk > 0 the functions zk(t) given by

(3) with oj2 = M/3%/3 are a solution of the 3-body problem (1).
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The following result is established in this paper:

THEOREM 1. //, for N > 2, the functions zk{t) given by (3) are a solution of

the N-body problem (1), it follows that u>2 = M7/JV where

(4) 7 = - J2 csc(ttj/N).

Note that for N = 3, formula (4) gives w2 = M/3\/3, which agrees with La-

grange's result. Also, it is interesting to note that for N > 2, the number 7 defined

by (4) is a positive algebraic number.

The main result of this paper is

THEOREM 2. For N > 4 and mk > 0 the functions zk(t) given by (3) with

uj2 — M7/7V and 7 given by (4) are a solution of the N-body problem (1) if and

only if mi = 1712 = ■ ■ ■ = mjv ■

Part of this theorem is well known, i.e., that N equal masses at the vertices of

a regular polygon, rotating about the center of the polygon with an appropriate

angular velocity oj (determined by Theorem 1) describe a periodic solution of the N-

body problem (1); cf. [7, p. 279]. The computation necessary to establish this result

was apparently first carried out by Hoppe [1] in 1879. The converse, for N = 4, i.e.,

that four masses at the vertices of a square, rotating about their common center of

mass with an appropriate angular velocity w (determined by Theorem 1) describe

a periodic solution of the four-body problem only if the masses are equal, follows

from the work of MacMillan and Bartky [4] ; cf. [7, p. 278]. The converse for N = 5

follows from the work of Williams [6] which extends the work of MacMillan and

Bartky. The converse can also be proved by elementary algebraic methods for the

first few integers greater than five; however, the proofs become increasingly more

difficult as N increases.

In this paper the above theorem is established for all TV > 4 by using some basic

properties of circulant matrices. It is a new result for regular polygon solutions of

the jV-body problem which has been suspected but never proved.

2. The proof. The proof of Theorem 2 uses the concept of a circulant matrix.

Let N > 2. An N x N matrix C = [ckj] is called circulant if

Cfcj — Cfc-ij-i,

where cqj and cko are identified with c^j and ckN respectively. Define the N x N

circulant matrices A, B and Ca as follows:

(5a) ak3 = { i1 - ^Tfc)/|1 " ^-fc|3        í0r I * £'
v    ' 3      \ 0                                           for j = k,

(5b) bkj = Pj-k,

(5c) Ca = A + olB

where pk is given by (2) and a G C.  That A, B and Ca are circulant is obvious

since the subscript (j — 1) — (k — 1) = j — k and po = Pn-
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The proof hinges on showing that certain eigenvalues of the circulant matrix

Ca with a — 7/jV and 7 defined by (4) are nonzero. This is accomplished using

the general formulas for the eigenvalues Afc and the eigenvectors v k of a circulant

matrix C — [ckj],

(6) ^fc = 2^ ClJ/rfc-i'

3

(?) Vk= {pk-i,Pk-i,---,Pk-i)T,

given for example in [3, p. 66]. It is interesting to note that the appearance of the

pk in formulas (6) and (7) is a result of only the circulant property of C and is not

dependent upon the pk occurring in equations (5) defining Ca.

The proofs of Theorems 1 and 2 are carried out in a sequence of lemmas which

are stated in more generality than is necessary in that the mk and w are allowed

to be complex in some instances.

LEMMA 1. For m= (mi,..., mjv)T G CN and uEC, the functions zk(t) given

by (3) are solutions of the N-body problem (1) if and only if

(8) {A + (w2/M)B) m= eu2 T

where A and B are defined by (5) and 1 = (1,..., 1)T G CN.

PROOF. Direct substitution into the differential equation (1) shows that the

zk(t) are a solution of (1) if and only if

j^k   ¡pk p^

or if and only if

2
EPk ~ Pi U     V^ 1

ruj -.-^ + TT >    rtijPj = w pk.
3 \pk-pj3     M ^    3n

3¿k J 3

Multiplying both sides by pN-k and noting that \pk — Pj\ = \Pk\ • |1 — Pj-k\ —
|1 - Pj-k\, and then using equation (2) shows that this last set of equations is

equivalent to equation (8).

LEMMA 2. For any a G C, the eigenvalue Xi of Ca is independent of a and

satisfies

_ ^    I-Pj   .

j^N   1 PJ|

furthermore, Ai = 7 where 7 is the positive number defined by (4) and v 1= 1.

COROLLARY. If mi = m.2 = ■■■ = m^v > 0, then zq = 0 and the functions

Zk(t) = Pkelwt with w2 = mi7 are a solution of the N-body problem (1).

The corollary follows since, by Lemma 2, Ai = 7, which is independent of a, and

v 1= 1. In particular, for a = 7/jV,

(A + {i/N)B) T= 7Î.
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Multiplying both sides by mi > 0 shows that m= (mi, mi,... ,mi)T G RN is a

solution to equation (8) with oj2 — TO17. If mi = m.2 = ■ ■ ■ = m/v then zo — 0,

since Yji Pj — 0- The corollary is now proved by Lemma 1.

This corollary establishes the well-known part of Theorem 2 stated in the intro-

duction.

PROOF. From equations (5) and (6) and elementary properties of the iVth roots

of unity,

Ai 1-Pi-i     1-1 . „,v" „     j'-i _ NT*    l~ Pi

which is independent of a. Since the (N — j)th term in this last sum is the complex

conjugate of the jtn term, Ai is real, so

y, Re(l-ft) _ y.        I-cobQj/JV)       =ly csc(7TJ/N]
Al -L,    |i _ p.|3   - Z.  [2 _ 2 co8(27ri/iV)]3/2 - 4 ¿- «W W

Thus Ai = 7 defined by equation (4). That «i=l follows immediately from (7).

LEMMA 3.   If m= (mi,m2,... ,m¿v)T G CN is a solution of equation (8) then

w2 = M1/N.

PROOF. Since by equation (6), Ai — V c\j, it follows from Lemma 2 that

the sum of any row, and hence the sum of any column, of the circulant matrix

A + (u>2/M)B is given by Ai = 7. Adding the TV equations in (8) then leads to

Ai(mi+m2+ ■■■ + mN)=oj2N.

This proves the lemma.

Lemmas 1 and 3 then establish Theorem 1 stated in the introduction.

LEMMA 4. The eigenvalue Án of A + (-f/N)B defined by (5) with 7 defined by
(4) and Ajv given by (6) satisfies Ajv = 0.

PROOF. It follows from equations (5) and (6) and elementary properties of the

jVth roots of unity that

Pj-ii

i-Pj „ , 7

3¿N

since p^v-1! = pp1 = Pj-i and pjPj = \pj\2 = 1. Thus by Lemma 2,

j¥1

fri. I   - Pj\3  J     N

A;
Pj'1

LEMMA 5.   For a G R, Ca, defined by (5), ¿s Hermitian.

PROOF.   Since Ca is circulant, for Ca — [ckj] it suffices to show that c\j

ci^n-j+2- From equations (5), for a G R,

1 — Pj-l              _                   1 - pN-j+l
Clj =   M-«-13  + aPj-i =  h-ñ-13  + aPN-j+í = Cl,N-j+2-
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From this point on At will denote the TV eigenvalues of the specific circulant

matrix C^/n = A + (^/N)B with A and B defined by (5) and 7 defined by (4).

Then, by Lemma 4, Ajv = 0.

The following two lemmas and their corollary form the basis for the proof of

Theorem 2.

LEMMA 6. If Xk ̂  0 for k / N then any solution m€ CN of equation (8) has

the form

m= (M/N) 1 +avN

where a G C and vn= (7>i,Pi, • • • ,Pi')T G CN; furthermore, if av# G RN then
either N = 2 or a = 0.

PROOF. If m G Cn is any solution of (8), by Lemma 3, w2/M = 7/iV, and

then equation (8) has the form (A + (^/N)B)m = oj2 1. Since A + (i/N)B is

Hermitian by Lemma 5, its eigenvectors { v 1,..., v jy}, given by (7), are a basis for

CN. Hence m— J2k ck v k- Thus if m is a solution of (8),

(A + d/N)B) m= £ CkXk^k = uJ2 T .
k

By Lemma 4, A^v = 0, and by Lemmas 2 and 3, w2 = M7/ÍV = MXi/N and

v 1 = 1 ; thus,

(ci - M/iV)Aj«i +   ^2    ckXkVk =0 .
l#fc^iV

But because the eigenvectors are linearly independent, if Afc 7^ 0 for k ^ JV, ci —

M/N = C2 — ■ ■ ■ — cn-i = 0. Thus m= (M/N) 1 -f ai7jv where a = cn G C.
To conclude the proof of the lemma note that, since px = 1, from equation (7) it

follows that av n = (api,ap2,..., apx ~1,a) which is in RN only if either a = 0 or

P\ G R; that is only if a = 0 or N — 2.

Note that the real solutions of equation (8) for N = 2 correspond to the circular

solutions of the two body problem with arbitrary masses.

LEMMA 7. For odd N, if A(jv+i)/2 = 0 and Afc ̂ 0 otherwise for k ^ N, then

any solution m£ CN of equation (8) has the form

m= (M/N) 1 + avN + bv{N+1)/2

where a, b G C, v n — (PnPii ■ ■ ■ ,Pi)T G CN and

f(AH-l)/2= (P(JV+l)/2>P(AM-l)/2>- •• )P(JV+l)/2)     £C    !

furthermore, if av n + bv (n+i)/2 G Rw i/ien either N = 3 or a = 6 = 0.

PROOF. The first part is proved in exactly the same way as the first part of

Lemma 6. To prove the second part, assume N > 3 and let r/t = apx + &Pnv+i)/2-

Then from equation (7), av n + bv(jv+i)/2 G RN only if rfc G R for all k. Since

Pk1 =Pk and $ — 1» J* follows that

f» + »J_l = 0(pi + pi) + 6(p(JV+1)/2 + P(JV + l)/2).

rjv =0 + 6.
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That a, 6 G R follows by applying Cramer's rule to this system whose determinant

is nonzero. Using equation (2),

ri = a(cos 27T/ÍV - i sin 27t/jV) + 6[cos(iV + 1)tt/N - i sin(iV + l)7r/iV],

r2 = a(cos 47t/jV - i sin Air/N) + 6[cos 2(iV + l)ir/N - i sin 2(jV + 1)tt/N}.

Since ri, r2, a, 6 G R, it follows that

a sin 27T/JV + 6 sin(iV + 1)tt/jV = 0,

a sin Att/N + b sin 2(iV + 1)tt/jV = 0.

This system has a nonzero solution (a, b) only if its determinant is zero; that is,

only if

0 = sin2 2tr/N + sin 7t/jV sin 47t/jV

= 2 sin 2ir/N sin tt/jV(2 cos2 tt/N + cos ir/N - 1).

This last quantity is zero only if cos tt/N = 1/2 or —1, which is impossible for

N > 3. Thus for odd N > 3, av N + bv<N+1)/2 G RN only if a = b = 0 or N = 3.
This completes the proof of Lemma 7.

Note that for N = 3 there are positive solutions of equation (8) which corre-

spond to Lagrange's equilateral triangular solution of the three-body problem with

arbitrary masses.

The following corollary is an immediate consequence of Lemmas 6 and 7.

COROLLARY.   Let N > 4.  If Xk ̂  0 for k ^ N, except that A(jv+i)/2 = 0 for

odd N, then m is a real solution of equation (8) only if m— (M/N) 1, i.e., only if

mi = m.2 = • ■ ■ — iriN ■

In view of Lemma 1 and the corollary to Lemma 2, in order to prove Theorem

2, it only remains to prove that the hypotheses of the above corollary are satisfied.

The following technical lemma is necessary for this task.

Lemma 8.
for k ^ N,

N       for k = N.£¿M"
PROOF. For k = N, p\    = 1 and the result follows. For k ^ N, the following

standard formulas are used:

(9) ^2 cos 23a
sin[a(n + 1)] cos an

sin a
3=0

._, vfk   .       .       sin[a(n +1)] sin an
(10) ^sm2.m= —r^-

Then

sin a
j=0

JV-l JV-l JV-l

E P3^ = E Àk = E cos(27TJk/N) + i Y, sin{2*jk/N).
j j=0 j=0 j=0

The substitution of N — 1 for n and of irk/N for a in (9) and (10) shows that the

last two sums are zero for k ^¿ N.
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LEMMA 9.   For any a G C and for 2 < k < N — 1, the eigenvalues Xk of Ca

are independent of a; furthermore, they are real and Xk = —X^-k+i-

PROOF. From equations (5) and (6),

Afc = E cijPÍ-\ - E ii _fJ"1|3 P'k'-i + aE Pi-ifi-v
3 m '    ß3~1] j

By shifting the index j in the first sum and by using p\ = pxk in the second sum,

^ = E^S^-i+«E^-1 r, ■ 3 rK-l    '        ^^ ri

Thus, by Lemma 8,

di) ^Eif^-t
J#JV   ' OI

which is independent of a. But, by Lemma 5, Afc is real if a is real. Thus Afc is

real, independent of a being real. To complete the proof, note that (1 — Pj)p°N_k =

(1 - P])PJ-k+i-i = iP3-i - l)Á+i = "(1 - pM-v Then by (").

A^-fc+l =  X!    II _0A3 PiN-k = - E    II _flJ|3 ^b-1 = ~^fc = "Afc-
j#jv |X    ft1 y#w ]i    ft!

COROLLARY.   For a G C, JV > 3, and k ^ N, the eigenvalues Xk of Ca, defined
by (5), ore gwen 61/

1  ^ 8in[7rj(2fc - l)/N]

4 ^       sin W/N)

PROOF. That (12) holds for k = 1 follows from Lemma 2 and equation (4). For

2 < fc < N — 1, it follows from (2) and elementary trigonometric identities that

Re[(l - Pj)pj_1} = sm[7TJ(2k - l)/iV]

|l-Pj|3      " 4sin2(7ri/iV)

Substituting this result into equation (11) and using the fact that Afc is real leads

to equation (12).

The next corollary follows by setting k = (N + l)/2 in Lemma 9.

Corollary. For odd N, XtN+1y2 = 0.

LEMMA 10.   For even N > 4, XN/2 > 0.

PROOF. By equation (12) and trigonometric identities,

~i,      sm (ttj/N) rrí,

That this sum is positive is seen by noting that for 1 < j < N/2, the first summand

is positive, the summands alternate in sign and their absolute values are decreasing.

By symmetry about j = N/2, the remaining part of the sum is also positive.
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LEMMA 11.   For N > 5 and2<k<(N - l)/2, Xk - Xk-i > Xk+i - Afc.

PROOF. In equation (9), by substituting q for j, ttj/N for a and k - 1 for n,

and by using elementary trigonometry,

V cos(2«qj/N) = ^jk/mcosMk-iyN)
¿¿ sinfo/JV)

_ sin[7rj(2fc - 1)/N] + sm(irj/N)

~ 2 sm(TTJ/N) '

Using this result with equation (12),

Afc=í UÍ^0+^^ 5 cos{2*qj/N)) •

From this it follows that

1  ^ cos[27rj(/c - l)/iV] - cos(27Tjfc/JV)
(Afc - Afc_i) - (Afe+1 - Afc) = - 2, -sin^/jv)-

= X] sin[7rj'(2fc-l)/jV].

Now applying equation (10), by substituting JV - 1 for n and ir(2k - 1)/(2N) for

o, and using more trigonometry,

_ sin[7r(2fc - l)/2] sin[7r(2fc - l)(N - 1)/(2AQ]
(Afc - Afc_i) - (Afc+i - Afc) - _______

= cot[7r(2fc - 1)/(2JV)].

This last expression is positive because 0 < 7r(2fc - l)/(2iV) < tt/2 for 2 < k <

(N-l)/2.

LEMM4 12.   For N > 4 and k ^ N, Afc / 0 except that A(w+i)/2 = 0 for odd
N.

PROOF. To show Xk > 0 for 1 < k < N/2, suppose Afc < 0. Then by Lemma

11, Afc+i + Afc_i < 2Afc which means either Afc+i < Afc or Afc_i < Afc. If Afc_i < Afc

then, again by Lemma 11, Afc_2 - Afc_i < Afc_i - Afc < 0, which means Afc_2 <

Afc_i < Afc < 0. Proceeding by induction, Ai < 0 which contradicts Lemma 2. If

Afc+i < Afc a similar proof shows that, for odd N, A(jv+i)/2 < 0 which contradicts

the second corollary to Lemma 9, or for even N, X^/2 < 0 which contradicts Lemma

10. So Afc > 0 for 1 < fc < N/2. That Xk < 0 for 7V/2 < k < N - 1 follows from
Lemma 9.

Finally, Lemma 12 shows that the hypotheses of the corollary to Lemmas 6 and

7 are satisfied and the proof of Theorem 2 is thus complete.
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