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TOTAL CURVATURES AND MINIMAL AREAS

OF COMPLETE OPEN SURFACES1

KATSUHIRO SHIOHAMA

Abstract. Minimal areas for certain classes of finitely connected complete open

surfaces are obtained by using a Bonnesen-style isoperimetric inequality for large

balls on the surfaces. In particular, the minimal area of Riemannian planes whose

Gaussian curvatures are bounded above by 1 is 4n.

.

Introduction. The present work was inspired by a fruitful paper of Gromov [3].

Throughout let M be a 2-dimensional connected, oriented, noncompact manifold

without boundary. Let W0(M) be the set of all complete metrics on M such that, for

every g in 2)í0(M), the Gaussian curvature Kg with respect to g satisfies \Kg\ *s 1.

Gromov proved (see [3, Appendix 1]) that the infimum of areas A(R2, g) over all

g g Wl0(R2) is greater than 4v + 0.01 and not greater than (2 + 2y2)«r. He also

proved that if the Euler characteristic x(^0 of M is nonpositive, then

infg<=mo(M)A(M', g) = 2ir\x(M)\. Moreover, if g g W^M) satisfies A(M, g) < oo,

then the total curvature c(M, g) = jMKg dAg = 2irx(M). Here dAg denotes the area

element of (M, g) with respect to g.

We want to provide a partial result for the minimal areas by using a Bonnesen-style

isoperimetric inequality. Such an inequality was first shown by Fiala [2] for analytic

metrics on R2 and later by Hartman [4] for smooth metrics on R2. The Hartman

theorem (see Theorem 7.1 in [4]) applies to the distance function to a fixed point p

on (R2, g) as follows. For every t > 0 let S(t):= {x g (R2, g); d(p, x) = t) and

B(t):= {x g (R2, g); d(p, x) < t), where d is the distance function induced from

g. Let A(t) be the area of B(t) and L(t) the length of S(t) (S(t) becomes a

piecewise smooth curve for almost all t > 0). If fK2\K \ do  < oo, then

limL2(/)M0 = 2(27T-c(Ä2,g)).
/-»oo

Now, M is called finitely connected if there exists a closed 2-manifold N and finite

pointspx,...,pm on N such that M is homeomorphic to N - {px,...,pm}. Such an

M is said to have m endpoints.

An essential improvement of the Hartman theorem is obtained here by a thorough

consideration of geometric significances on the existence of total curvature on a
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finitely generated connected and complete (M, g). Indeed, the existence of c(M, g)

in [-00, 2ttx(M)] imposes strong restrictions on the distance function from a fixed

point and on the topology of S(t) for all sufficiently large t.

The crucial point of our improvement of the Gromov theorems is based on the

following generalization of the Hartman theorem.

Theorem A. Let (M, g) be complete and finitely connected. Let p be a fixed point

on M, and let S(t):= [x G M; d(x, p) = t} and B(t):= {x G M; d(x, p) < ;}. If

(M, g) admits the total curvature, then

lim í&¿ = 2irx(M) - c(M, g)

and

m
r-'oo   2t'
lim ^/ = 2wx(M)-c(M,g),

where L(t) andA(t) are the length ofS(t) and the area ofB(t), respectively.

Note that the right side of these equations is nonnegative by a well-known

theorem due to Cohn-Vossen [1]. It is not known whether Theorem A holds for

infinitely connected M.

Theorem A was already proved in the simplest case where M is homeomorphic to

R2 (see [7, Theorem D]). A generalization of the Hartman theorem is a direct

consequence of Theorem A, as stated: If M is finitely connected and if the total

curvature of (M, g) exists, then

L2(t)
lim —7-r- = 2(2-nx(M) - c(M, g)).

/-.oo  A(t)

Furthermore, the following is a straightforward consequence of Theorem A.

Corollary. If M is finitely connected, (M, g) is complete A(M, g) < oo, and the

total curvature of(M, g) exists, then c(M, g) = 2trx(M).

Note also that if M is not finitely connected and if the total curvature of complete

(M, g) exists, then a well-known theorem due to Huber [5] states that c(M, g) = -oo,

and the Corollary holds in this case.

Our result on minimal areas is

Theorem B. For a finitely connected M let Tl(M) be the set of all complete

Riemannian metrics on M such that for each g in 3R(M), K < 1 ifx(M)^ 0 and

Kg > -1 ifx(M) < 0. Then

Uw ifX(M) = \,

inf    A(M,g)={0 ifx(M) = 0,
geWUM)

[2v\x(M)\      ifx(M)<0.

However, it is not yet known that the minimal area for W0(R2) is (2 + 2^/2)it,

and this problem seems to be very hard.
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1. The proof of Theorem A. The proof of Theorem A is obtained by the following

Facts 1 and 2, which have been established by the author in [7]. Some notations are

needed to state them.

Let (R2, g) be complete and let 6 be a smooth regular curve on R2. Let Mx be the

domain with boundary S and homeomorphic to the closed half cylinder S1 X [0, oo),

and let p: Mx -* R be the distance function on Mx to ß, e.g.

p(x):= inî{d(x, y);y g (£},

where d is the distance function on R2 induced from g. Let S(t):— {x g Mx;

p(x) = t] and B(t):= [x G Mx; p(x) < t). The cut locus C(S) of S (in Mx) was

completely determined by Hartmann [4] as follows: For almost t in [0, oo), S(t)

intersects C(6) at finite points xx(t),... ,xk(t), and each point x¡(t) is joined to Ê

by exactly two distinct minimizing geodesies with length t, along each geodesic of

which x¡(t) is not a focal point to 6. Thus, C(E) forms a smooth curve in a small

neighborhood of each x¡(t), and S(t) becomes a piecewise smooth regular curve.

Such a / is called nonexceptional. The length L(t) of §(t)'&t each nonexceptional t is

differentiable. However, L(t) is not, in general, continuous. It is not known how

many components of S(t) there are.

The existence of total curvature of (R2, g) makes it possible to show the

continuity of L(t) and the connectivity of S(t) for all sufficiently large t. The

existence of total curvature also makes it possible to prove a sharp estimate for the

derivative of L(t) for all sufficiently large nonexceptional t, and this estimate is

required for the proof of Theorem A.

For a point x g Mx consider all minimizing geodesies joining x to points on ©

having the same length p(x). If there are at least two distinct minimizing geodesies

joining x to points on E with the same length p(x), then there is a compact domain

Ex in Mx homeomorphic to a closed 2-disk which is bounded by the two geodesies

with length p(x) and the subarc E having the same endpoints as theirs, where the

two geodesies on the boundary of Ex are chosen in such a way that if a is a

minimizing geodesic with length p(x) joining x to a point on Ê, then a lies on Ex. If

there is a unique minimizing geodesic from x to a point on © with length p(x), then

Ex consists of all points on the geodesic. Let ß(x) be the angle at x between the two

vectors tangent to the geodesies lying in the boundary of Ex which is measured with

respect to Ex. ß{x)*> 0 if there are two distinct geodesies in the boundary of Ex,

and ß(x) = 0 otherwise. The following facts have been established in [7].

Fact 1. There exists a T > 0 such that S(t) is homeomorphic to a circle for all

t>T.

Fact 2. For any positive e there exists a Te > 0 such that if t > Tt, then T.x^§(l)ß(x)

< e.

The proof of Theorem A. Choose a large number T such that T is a nonexcep-

tional value and such that M - B(T) has exactly m unbounded components. Let M{

be a fixed unbounded component of M — B(T). Then the boundary of M{ is a

piecewise smooth regular curve and homeomorphic to a circle. M{ is homeomorphic

to S1 X [0, oo). Since the angle at each nondifferentiable point on the boundary
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curve is less than -n (measured with respect to M[\ there exists a small positive

number 8 and a smooth regular curve 6 in M[ with the following properties:

(1) If xx(T),... ,xk(T) are all nondifferentiable points on the boundary curve of

M{ and if for each i = l,...,k, B¡(8) is an open ô-ball around xt(T), then

dM{ -U?.1B/(8)C S.
(2) If Mx c M{ is the domain bounded by S and homeomorphic to Sl X [0, oo),

and if p: Mx -» Ä is the distance function to ©, then p(x) + F= d(p, x) for all

x g Mj with p(x) > 1.

Property (2) is checked as follows. Since T is nonexceptional and the set of all

nonexceptional values is open in [0, oo), there is a T' > T such that every tïn[T, T')

is nonexceptional. For every í e [Í, 7"), S(t) C\ C(p) O M[ consists of k points

x¡(t),...,xk(t), and, for each i = \,...,k, t -* x^t) is a smooth regular curve

bisecting two minimizing geodesies joining p to x¡(t). For each / G [7", 7") and

i = 1,... ,k, let a,,, t,,: [0, t] -» M/ be the two geodesies with a, ,(0) = tm(0) = p

and a,,(?) = t, ,(/) = x,.(f)> and let

ô(i):=max{^(x,(r),af,,(r)),J(x/(7),T,,,(r));/=l,...,/t}.

5 is continuous and 8(T) = 0, and, hence, there is a t0 G [T, 7") such that 8(t0) =.8

is less than the convexity radius of the compact set B(T') - B(T) and such that

r0 — T < 1. For each / let ©, be a smooth regular curve joining a, AT) to t, ¿(T)

such that it is tangent to S(T) at its endpoints and contained entirely in M{ n

Bs(x¡(T)) - B, T(x¡(t0)), where Br(q) is the open metric r-ball around q. The

desired curve 6 in a neighborhood of each x¡(T) is obtained as ©,. Let v G Mx with

p(y) > 1. Let y: [0, p(>>)] -» Mj be a minimizing geodesic joining y to a point z on

(£. Suppose z g E(. for some ». Then y intersects at a point q on ar ,([T, /0]) (or on

t,o ,([r, f0])). Since

p(*i('o)) - 'o - r- length (a/o,,|[r, r0]),

and since ^ is an interior of a, ¿([T, i0]), p(^) realizes at a unique point a, ¡(T). This

implies p(q) < d(q, z) and, hence,

rf(>, z) > d( V, ?) + d(q, a,0,,(T)) > rf(y, o,o,(T)),

contradicting the choice of Z. Hence, z g 6 - Uf=1ß, and the triangle inequality

implies p( v) + T ^ d(p, y); the reversed inequality is obvious. This proves p(y) +

T = d(p, y) for y with p( y) > 1.

The above argument shows that if the distance function from p is restricted to

Mx — B(T + 1), then it is p + T, and Facts 1 and 2 can be applied to it. There exists

a T0 > T + 1 such that if t > T0, then S(t) has exactly w components and each

component is homeomorphic to a circle, and L(t) is continuous in t. Here the

continuity of L(t) follows from limAi05(/ - h) = S(t) = limAi0S(/ + h).

Now if t > T0 is nonexceptional, then the derivative of L(t) is given as follows.

Setc(ß(0):= I-BU)KgdAg.

^ill = 2,x(M)-c(B(t))-    £
.veS(r)L

r

2tm^f--ß(x)
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It follows from Fact 2 and the finite connectivity of M that if e > 0 is arbitrarily

given, then there is a 7Xe)' such that

¿-i
x£S(t)

2 tan %i - ß(x) < e

holds for all t > T(e)', and hence

- dL(t) -
2nX(M) - c(B(t)) - e < -±± < 2nX(M) - c{B(t)).

—
On the other hand, the area/l(r) of B(t) is given as

A(t)-A(T)= ¡' L(u)du.
T

If c(M, g) = -oo, then the limit of the derivative of L(t) as t -» oo is -oo, and the

proof of Theorem A in this case is obvious by L'Hospital's theorem. If c(M, g) >

-co, then for any e > 0 there is a T(e)" such that \c(B(t)) - c(M, g)\ < e for all

í > T(e)". The proof is completed by the following inequalities:

2t7X(M) - c(M, g) - 2e < lim ^ß < 2mX(M) - c(M, g) + e,
/-»oo        *

' hm *&
/-»oo    2

2t7X(M) - c(M, g) - 2e < lim -^ < 2ttX(M) - c(M, g) + e.

2. The proof of Theorem B. It should be noted that if A(M, g) = oo for some

g g TI (M ), then either the total curvature of (M, g) does not exist, or else

c(M, g) < 2wX(M). This fact is an immediate consequence of Theorem A.

The proof of Theorem B in the case X(Af) < 0 is clear from the following

inequalities: Let K~ := mm{Kg,0}. Then

(M,g)> f  KgdAg>-A(M,g),
'M

where equality holds if and only if Kg = -1.

The proof of Theorem B when x(Ai) = 0 is clear, since for any positive e there

exists a complete surface of revolution in E3 around the x-axis such that the

Gaussian curvature of it is 1 around the origin and is negative away from the origin

such that the area of it is less than e.

The following lemma is useful for the proof of the rest of Theorem B.

Lemma. For every g g Tt(R2) with c(R2, g) = 2ir, there exists a point p0 and an

R > it such that the metric R-ball BR(p0) aroundp0 has area greater than 4w.

Proof. Since c(R2, g) = 2m, every Busemann function on it is exhaustion, and, in

particular, takes minimum. Let p0 be a point on the minimum set of a Busemann

function. Then for every unit vector v at p0 there exists a ray a emanating from p0

such that (v, á(0)) ^ 0. The exhaustion property of every Busemann function was

proved in [6]. The above fact implies that there are at least two distinct rays

emanating from p0. Consider the set V of all points on all rays emanating from p0.
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Set LiXeXUx = R2 - V, where Ux n U^ = 0 for X * u. For each A g A, Ux - Ux

consists of two distinct rays, and the angle at p0 between the two rays measured on

Ux is not greater than it. Each Ux contains no ray emanating from p0 and contains a

component of C(p0).

If the injectivity radius i(p0) of the exponential map at p0 is not smaller than 77,

then the conclusion is direct from the Rauch comparison theorem.

If i(p0) < 77, then there is a point p' g C(p0) n Ux for some X g A such that

d(p0, p') < 77. Letp, g C(p0) n Ux be a point with the property that d(p0, p\) —

d(p0, C(p0) n Ux) ='-a0. Then there exists a geodesic loop y0 at p0 of length 2a0

such that y0(a0) = px and y0((0,2a0)) is contained in f/x. y0 bounds a 2-disk Z)0

which is contained in Ux, and the angle a0 of y0 at p0 measured on D0 is less than 77.

Thus, D0 is convex. It follows from a0 < it and a0 < it that there exists a point

¿7 g C(px) n £>0 with the property that </(/>!, 9) < d(px, p0). Therefore, there is a

point p2 on D0 n C(px) such that d(px, p2) = */(/?,, C(p,) n D0) < d(p0, />,). Set

Û! := i/(/>!, p2)- There exists a geodesic loop y, atp, of length 2^ whose image lies

in D0, and the angle a, of y, at px measured on £>, is less than 77. By iterating this

procedure, one finally gets a simply closed geodesic y in D0 whose length is lim 2a ■

and y bounds a 2-disk Z) contained entirely in D0. The Gauss-Bonnet theorem

implies that c(D, g) = 2vr, and, in particular, /1(Z), g) > 2w follows from the

assumption Kg < 1.

The above argument shows that if there is a point q on C(p0) n i/x such that

d(Po> ?) < "■' tnen there is an Ä > 77 such that/l(£R(p0) D i/A, g) > 277. Therefore,

,4(BR( p0), g) > 477 holds for some R > 77 if there are at least two points q and q' on

C(p0) such that q g t/x, ^r' g ¡J with \ i* ju, and such that i/(p0, ^) and d(p0, q')

are less than 77. If there is a unique X G A such that every point q g C(p0) with

d(,Po> 9) < m ues m ^x> men the Rauch theorem implies that A(B„(p0) - Ux, g) =

2(277 — t), where 6 is the angle of Ux atp0. Thus,

¿(Br(Po)> g)>2" + 2(2^ - t) > 4t7

holds for some R > it, and the proof is complete.

The rest of the proof of Theorem B is achieved by showing that for any positive e

there exists a ge g W(R2) such that A(R2, g) < 4w + e. Let y = f(x), x > 0, be the

equation of a tractrix with/(0) = 1. For a given positive e there is a small positive tj

such that the area of the surface of revolution in E3 around the x-axis, whose profile

curve is given by v = nf(x), has are less than e/2. Let S2 be the unit sphere in £3

around the origin and remove from S2 a small ball around the point (1,0,0). Then

attach a portion of the surface of revolution to the hole such that the total area of

the resulting C°-surface is less than 477 + 2e/3. This surface is approximated by

smooth surfaces whose induced metrics have Gaussian curvature not greater than 1

and whose area is less than Air + e. This completes the proof of Theorem B.

Note that if {e,} is a monotone decreasing sequence with limy_00e/ = 0 and if

gj g W(R2) is obtained in the above construction for ey, then lim^^^-R2, gf) -

Ait, and inf,_00_A2¿['   = -00. Hence, gj <£ Tt0(R2) for all large7.
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