
proceedings of the
american mathematical society
Volume 94. Number 2, June 1985

SYMMETRIC CUT LOCI IN RIEMANNIAN MANIFOLDS

W. VANNINI AND J. H. RUBINSTEIN

Abstract. Let M be a compact Riemannian manifold with Hl(M, Z) = 0. We show

that, for a point p e M, the cut locus and conjugate locus of p must intersect if M

admits a group of isometries which fixes p and has principal orbits of codimension at

most 2. This is a classical theorem of Myers [5] in the case when M has dimension 2.

0. In [5] Myers proved that if M is a Riemannian manifold homeomorphic to S2

and p G M, then the cut locus and conjugate locus of p in the tangent space Mp must

have a common point (also see Theorem 5.1 of [10]). On the other hand, Weinstein

[10], answering a problem of Rauch [7], constructed a Riemannian metric on any

compact simply-connected C00 manifold not homemorphic to S2, so that there is a

point p g M whose conjugate and cut loci are disjoint. The following conjecture was

proposed by Weinstein [10]: "If M is a compact simply-connected Riemannian

manifold, then for some point p e M, the conjugate locus and cut locus of p

intersect." Gromov has recently constructed metrics onS3 with sectional curvature

< 1 and arbitrarily small diameter, thus disproving this conjecture.

We give the following extension of Myers' result.

Theorem Suppose M is a compact, connected, C°° Riemannian manifold and there

is a compact Lie group G of isometries of M which fix some point p G M. Assume that

HX(M, Z) = 0 and that a principal orbit of the G-action has codimension 2. Then the

conjugate locus and cut locus of p must have a point in common.

1. Remarks, (a) If M has dimension 2, then, since HX(M, Z) = 0, it follows that M

is homeomorphic to S2. If we take G to be the trivial group, then the theorem

becomes Myers' result.

(b) All the 3-dimensional lens spaces L(m, n) (see e.g. [6]) with the standard

spherical metric admit S^-actions which fix points p. Also the cut and conjugate loci

of p are disjoint, but Hx(L(m, n), Z) = Zm.

(c) The Poincaré dodecahedral space M3 (see [6]) with metric induced from S3 is a

homogeneous space admitting a transitive SU(2)-action. Moreover, HX(M, Z) = 0

and the cut and conjugate loci of any point are disjoint. However, the isotropy

subgroup of any point is finite, so it has principal orbits of codimension 3.
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(d) In Berger's classification [1] of normal Riemannian homogeneous spaces of

strictly positive curvature, a class of Riemannian metrics on odd-dimensional

spheres S2" + 1, of the form SU(« + 1) X R/SU(«) X R, is given. It is easy to see

that these examples satisfy the hypotheses of the theorem, and, hence, the conjugate

and cut loci of any point must intersect. Note that the conjugate locus of a point in

these manifolds is calculated in [3], and the cut locus, in the case n = 1, is computed

in [8]. The result of the theorem applied to these examples of Berger for the case

n = 1 is also given in [9].

2. Following Bredon [2], we introduce some transformation group notation. Let M

be a compact C°° manifold, and let G be a compact Lie grouup acting smoothly on

M. The orbits Gp, p g M, are partially ordered by the relation Gp < G if the

isotropy subgroup of p is conjugate to a subgroup of the isotropy subgroup of q. A

maximal orbit type is called a principal orbit, and the union of all principal orbits is

labelled U.

The nonprincipal orbits are of two types. Let d be the dimension of a principal

orbit. Orbits with dimension strictly less than d are called singular, while nonprin-

cipal orbits with dimension d are called exceptional. The union in M of the singular

(resp. exceptional) orbits is denoted by B (resp. E).

Let M * denote the orbit space. If 5 is a G-invariant set in M, let S * denote the

projection of S to M*. Then U (resp. U*) is an open dense subset of M (resp M*).

(See [2, Theorem 3.1, p. 179].) If dim M = n and d=n-\oxn — 2, then M * is a

manifold, possibly with boundary (cf. [2, Lemma 4.1, p. 186]).

With the notation of the theorem, let C(p) (resp. C(p)) denote the cut locus of p

in M (resp. Mp). Note that C(p) is homeomorphic to S"~l. The action of G on M

can be lifted to a linear action of G on the tangent space M . We let Ü (resp. B, Ë)

denote the union of the principal (resp. singular, exceptional) orbits in M . Finally,

let D(p) be the cell which is the closure of the bounded component of M  — C(p).

3. Proof of the Theorem. If dim M = 2, the result follows by Myers' theorem (cf.

[5 and 10, Theorem 5.1]). Therefore we can assume dim M > 3. Now the action of G

on D(p) can be regarded as the cone of the action of G on C(p) with the origin as

vertex, since D(p) is star-like from the origin and the G-action on Mp is linear. By

[2, Theorem 8.2, p. 206], C(p)* is homeomorphic to either S1 or [0,1], since the

principal orbits for the G-action on C(p) have codimension one. In the former case

C(p)* is a bundle over Sl, which gives a contradiction (by the homotopy sequence

of a fibration applied to the (n - l)-sphere C(p)). So D(p)* is a cone on the

interval C(p)*.

Since dim M > 3, p is a singular orbit of the G-action on M, so B* ¥= 0.

Therefore, all the hypotheses of Theorem 8.6 in [2, p. 211] are satisfied for the

G-action on M. We conclude that E* = 0,M*isa 2-disk with boundary B*, and

intM* = U*.

Let exp*: M* -» M* be the map between orbit spaces induced by the G-equi-

variant map exp: Mp -» M. Since exp: D(p) — C(p) —> M — C(p) is a diffeomor-

phism, it follows that exp*: D(p)* - C(p)* -» M* - C(p)* is a homeomorphism.



SYMMETRIC CUT LOCI 319

Suppose that C(p) has no conjugate points, i.e., exp is a local diffeomorphism at

each point of D(p). Hence, G-orbit dimensions are preserved by exp restricted to

D(p), and exp* maps principal (resp. singular) orbits in D(p)* to principal (resp.

singular) orbits in M*. Furthermore, there are no exceptional orbits in D(p)* since

E * is empty.

exp*: D(p)* -*. M* is a continuous map onto the 2-disk M*. As above, exp*:

~D(p)* n Ü* -* U* and exp*: D(p)* n B* -* B*. Also, int(D(p)*) must be

contained in Ü* since it is mapped into int M* = U* by exp*. We conclude that

'mtC(p)* c (j* also, because D(p)* is a cone on the interval C(p)*. The same

reasoning shows that 3Z)(p)* - int C(p)* c B*. Note that exp* projects the inter-

val db(p)* - int C(p)* onto the circle B* by identifying the two endpoints of the

interval.

We need to establish that exp* is locally one-to-one on the arc C(p)*. Suppose

this is not the case. Then there are points x,yt,zt in C(p) with Gy¡ # Gzt,

exp v, = expz,, and elements g¡, ft, g G, so that gjyi -» x and hizj -* x as /' -» oo.

Since G is compact, by choosing subsequences it suffices to assume that g, -» g and

A,- -» A as i -» oo. If g = A then yt -» z( and exp is not one-to-one in a neighbour-

hood of x. This contradicts the hypothesis that there are no conjugate points in

C(p). Hence, g # A. Also, j, -» g_1x and z, -» A~\x as /' -» oo, so expg_1x =

exp h~lx, i.e., expx = expgA'bc = gA_1exp;c. This proves that expx has a nontriv-

ial isotropy subgroup and, hence, belongs to an exceptional orbit, contradicting

E* = 0. Therefore, exp* restricted to C(p)* is locally one-to-one.

To complete the proof of the Theorem, we apply a similar argument to Theorem

5.1 of [10] (cf. [5] also) to conclude that there is a contradiction, since M* — C(p)*

is connected but exp*: C(p)* -* M* is locally one-to-one with image C(p)*.

(C(p)* must be a tree, and, hence, exp* cannot be locally one-to-one at the

preimage of a vertex of this tree in int M*.)

4. For completeness we note the following simple result when there is a codimen-

sion-one isometry group fixing a point.

Proposition. Suppose M" is a compact, connected, C°° Riemannian manifold, there

is a compact Lie group G of isometries of M which fix p g M, and the principal orbits

have codimension one. Then either the conjugate and cut loci of p intersect, or M is

diffeomorphic toRP".

Proof. Clearly G acts transitively on C(p), so C(p) = [x g Mp: ||x|| = k) for

some constant k. By Lemma 5.6 of [4] either every point of C(p) is a conjugate

point of p, or exp x = exp y for x, y g C( p ) if and only if x = -y. In the latter case

exp: D(p) -* M gives a diffeomorphism </>: RP" -» M by identification of RP" with

D(p)/~ , where x ~ y if and only if x «■ -y and ||jc|| = k.
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