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MINIMAL DISKS AND COMPACT HYPERSURFACES

IN EUCLIDEAN SPACE

JOHN DOUGLAS MOORE AND THOMAS SCHULTE

Abstract. Let M" be a smooth connected compact hypersurface in (n + 1)-

dimensional Euclidean space E" + l, let A"+l be the unbounded component of

£-»+1 _ M"t an(j let K[ < k2 ^ ' ' ' < ">, De tne principal curvatures of M" with

respect to the unit normal pointing into A" + 1. It is proven that if k2 + • • ■ + ic„ < 0,

then A " + ' is simply connected.

1. Introduction. Recently the theory of minimal surfaces has yielded many striking

results relating topology to curvature of Riemannian manifolds. We are interested in

applying minimal surfaces to extrinsic problems which relate topology to curvature

of submanifolds of low codimension in Euclidean space.

The simplest case is that of a smooth connected compact hypersurface M" lying in

(n + l)-dimensional Euclidean space E" + l. Such a hypersurface divides E" + l into

an unbounded connected open region A"+l and a bounded region B"+1. In this case,

the basic local invariants are the principal curvatures k,<k2< ••■ <k„ with

respect to the unit normal pointing into A" + 1. Although the principal curvatures are

extrinsic, they are completely determined up to sign by the intrinsic Riemann-Chris-

toffel curvature tensor of M", when the rank of the curvature is at least three. In this

note we will apply techniques of Courant and Davids [CD] and Meeks and Yau

[MY, Theorem 1] to solve a free boundary value problem for minimal disks, and as a

consequence will prove the following

Theorem. Let M" be a smooth connected compact hypersurface in En + l, and let

A" + l be the unbounded component of En + l — M", where n ^ 2. If k2 + • • • + k„ < 0,

then A" + 1 is simply connected.

Note that if n = 2, the hypotheses imply that M" is convex, from which one easily

concludes that An + l is simply connected. Therefore, throughout the remainder of the

article, we will assume that n > 3.

It should be mentioned that by an argument quite different from the one given

here, Howard and Wei [HW, Theorem 5] show that if, in addition to our hypotheses,

the principal curvatures of M" satisfy the condition k„ + (k2 + • • • + k„) < k,,

then ttx(M) = 0. Moreover, the referee informs us that very recently Ji-ping Sha has
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obtained results which imply our theorem by different methods, which are to appear

in his thesis at Stony Brook.

2. Second variation. The proof of the Theorem will utilize the formula for second

variation of area for a minimal disk in E N whose boundary is constrained to lie in a

given compact submanifold M" of EN.

For each t g (-e, e) let Xt: D -* EN be a smooth map, depending smoothly on t,

where D is the closed unit disk in the complex plane, and suppose that each X, maps

the boundary dD of the unit disk into M". Then the variation field

V = — ( X)\

is tangent to M along X0(dD). (Conversely, given any smooth V: D -* EN which is

tangent to M along dD, we can construct a corresponding family { Xt: t G (-e, e)} of

smooth maps of D into EN such that X,{dD)Q M.) Suppose that X0: D -» EN is a

branched conformai minimal immersion and that the variation field V is perpendicu-

ar o   0(    ).

A(X,) = aTe<ioîXt(D),

we claim that

2

j-2(A(X,))\,^ = I(V,V),

where

(1) I(V,V)=fß(dV)±f-\\(dV)T\\2}dA+f^a(V,V).vds.

In this formula, dVis the usual differential of the is^-valued function V,
■

(dV)   = component of dV tangential to X, ( D ),

(dV)± = component of dV perpendicular to X, ( D ),

a is the second fundamental form of M in EN (see [KN, vol. II, p. 10]), and v is the

unit normal to M in EN which points away from X0(D). (Since the Gauss map of a

branched conformai minimal immersion extends to a smooth map at the branch

points, {d\r)T, (dV)^ and v are well defined at the branch points of X0.)

U XQ has no branch points and the variation field V vanishes on dD, (1) is a

special case of the second variation formula found in Lawson [L, p. 49].

For completeness, we sketch a derivation of (1) in two steps, the first step being a

derivation of the slightly easier formula for second variation of energy. If (u, v) =

(u\ u2) are standard coordinates on D, the energy of Xt is

E(X) = -(  l^-^ + ^-^)dudv
'       2 JD \ 9«      du        ûv      dv )
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Differentiation under the integral sign and integration by parts yields

j-2(E(X,)) = f¿Zdt¿ jd ,

j r¡

d2X,

dtdu'
dudv +

d3x,    dx,

dt2du'    du'
dudv

_/<_

3«'I 3i
dudv I d2x.

D  dt¿

d2x.    d2x.

r   d2X,   [dX, dx,
+ J      -^-{^-dv-

JdD dt2    \ 3» dv

du2        dv2 .
du dv

Under the assumption that X0 is harmonic, the second term drops out at t = 0,

leaving

(2)
dt2

(E(X,))\,=0= (WdvfdA + f    a(V,V)-vds.
JD JdD

The formula for second variation of area is a direct consequence of (2) and the

formula

2

(3) ±-2(E(Xl)-A(Xl))\l_0=[2\\(dV)T(dA,
dt2 Jd

which we claim holds under the assumption that V is perpendicular to X0(D).

Indeed if we set g,y = (dXt/du') ■ (dX,/duJ), (g'J) the matrix inverse to (g,7) and

g = det(g;/), then a standard calculation shows that

(4)
1

:{\/g) = ̂ V^ ¿Z g
'-/ = !

Ä
dtKVÍ"   2V6 ^,* \ dt

Note that, at t = 0, g(/ = X8U, and

3 / r-\, ! / 3 \, v, y- 3K    3*0
37(^)1,-0 = y I 87F" + fe)l'=° = t 3^ "sV'

Since Kis perpendicular to ^„(D) and X0 is harmonic,

(5) G/g)|,-„- l^ + ̂ l
du2     dv2

Differentiation of (4) yields

_.
dt2 (^-flT-IEMa. 3/        3i

Ii_v„„/_ + l^E(^)f%]

^Zí'T'%1

Evaluation at / = 0 and application of (5) gives
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But

_2i       .f   M»      3K    3*o
3' a«' ' duJ + duj ' du1

= ~2V • T7T1 = 2^Slk ((*, »-component of (dV)T),
du duJ

so

^d/g)|,_o = l(|l)(sii + te'JU* - 4(dV)T\f)ig\t-o,

from which the desired formula (3) follows by integration.

3. Existence of a minimal disk. We now assume the setup of the theorem: M" is a

smooth connected compact hypersurface in E"+l, whose complement is the disjoint

union of an unbounded connected region A" + 1 and a bounded region B" + 1.

Throughout this section we assume that rrx(A, x0) + 0, where A = closure of A and

x0 g M. It follows from the homotopy exact sequence

• ■ •  - »a(£"+\ *0) - *2(E"+\ Ä, x0) - Vl(I, x0) - »!(£"+1, *o) "•'•'■ ■

that 7T2(E" + 1, A, x0) ¥= 0. Let £20 be the space of smooth maps X: D -» En + 1 such

that X(dD) ç A, and the mapping of pairs X: (D, dD) -» (£" + 1, Ä) is not homo-

topic to a map taking D into A. (In this case, we say that X represents a nontrivial

element in the set ir2(E" + 1, A) of free homotopy classes.)

Let p0 = inf{E(X): X G Í20), the infimum of energy. We claim that it follows

from the arguments in Courant and Davids [CD], together with boundary regularity

results of Jäger [J], that there exists an element X0 g fi0 such that E(X0) = p0.

To prove the existence of X0 g fi0 realizing the minimum energy, it will be

convenient to utilize additional function spaces Qx, S22 and Q3. Let ilx be the space

of smooth maps X: D -» E" + 1 such that X(dD) çz M and X represents a nontrivial

element in tt2(E" + 1, A), and let jti, = ïnî{E(X): X g Í2,}. Clearly jtt, > p0, and we

claim that, in fact, ju., = fi0. Indeed, if X g ß0 and E( X) < fi0 + e, we can put X in

general position with respect to M by means of an arbitrarily small perturbation

keeping the energy < ju0 + e and X g ß0, so that X is an immersion, X(dD) does

not intersect M, and A^int D) intersects M in a finite number of circles. D is then

divided into the disjoint union of three sets Ä = X~1(A), B = X~1(B) and M =

X~l(M) (see Figure 1).

M consists of a finite collection of circles Cx,... ,C,, each C, bounding a disk Di

contained in D. We partially order these circles by setting C, < C <=> C, ç Dj. If

Cj,..., Ck are the circles which are maximal with respect to this partial ordering, and

X,\ D -* E"+1 is a reparametrization of X\D¡   for 1 < i < k,

then it is easily seen that at least one of these X^s represents a nontrivial element in

tt2(E" + 1, A) (which is isomorphic to the set trx(A) of free homotopy classes of loops

in A). Thus X¡ G Qx and E(X¡) < p,0 + e. Since e was arbitrary, we conclude that

Mi = Mo-
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Figure 1

For e > 0, let M(e) = {p g E" + l: d(p, M) < e) and note that M is a deforma-

tion retract of M(e) for e sufficiently small, say for e < e0, where e0 is a fixed

positive number. Let Í22 be the collection of smooth maps from the open unit disk D

into E" + l such that:

(i)E(X) is finite.

(ii) given e, 0 < e < e0, there exists an r, 0 < r < 1, such that X(D - Dr) ç M(e),

where Dr = {(u, v) G D: u2 + v2 < r2}, and

(iii) X\Dr represents a nontrivial element of tt2(E" + ï, A U M(e)).

Letp2 = infi^*): X œ 22}.

Finally let ß3 be the collection of sequences {X¡: i = 1,2,3,...} of smooth maps

Xt: D 4 £" + 1 such that:

(i) E( X¡) is finite for each /,

(ii) given e, 0 < e < e0, there exists a positive integer jV(e) such that, for each

/ > jV(e), X¡(D - Dr) C M(e) for r sufficiently near 1 (where r depends on /'), and

(iii) X¡\Dr represents a nontrivial element of tt2(E" + 1, A U M(e)).

If { X,} G Öj, let E({ X¡}) = lim inf{E( X¡): i = 1,2,3,...} and set

H = M{E({X,}):{X,}ea3}.

Clearly p3 < p.2 < ¡ix, and we will show that, in fact, p., = ju2 = p3.

One easily constructs an element {Xt)'GQ3 such that E(X¡) -» p3. By an

arbitrarily small alteration of X¡, we can arrange that X¡\dDr,^ is an imbedding,

where r(i) is chosen to approach 1 as /' -> oo with X¡(dDr(¡)) a noncontractible curve

in A U M(e). Let 1^: D -» £"+1 be the Douglas-Courant solution to the Plateau

problem with boundary curve ^(3/)^,.)). Since Y¡(dD) is not contractible in A U

A/(e), y, takes some point of D into B — (B n A/(e)), and after composing with a

linear fractional transformation, we can arrange that y/O) e 5 - (i n Ai(e))- Note

that {7,} g ß3and£(Y,)->p3.

The y,'s are bounded harmonic maps; hence a subsequence of them, still denoted

by {y,}, converges uniformly on compact subsets of the open disk D to a harmonic

map X0: D -» £"+1. By Theorem 1 of [C], X0(D - Dr) Q M(e) for r sufficiently
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close to 1. Since y,(0) G B - (B n M(e)), X0 is not constant. By lower semicontinu-

ity of the Dirichlet integral, E( X0) < p3 and hence p3 > 0. Moreover,

(6)
2 in.

3y

3«
+

3 y

3»
dudv > c   for somec > 0,

for all sufficiently large i.

We next show that if r is sufficiently near 1, X0\Dr represents a nontrivial element

of 772(£" + 1, A u M(e)), and hence X0 G ß2. Let (r, 6) be the usual polar coordi-

nates in the disk and observe that, for i large

2JD\\ du

■f"SJq      jx

_

dv
dudv < 2p3

3 y

dr
drdO < 2Í

JD-D

so that for some 0(

/: if <-o.)

1/2

3 y

3r
rdrdO < 8ju3

c/r <
4p3

f or - < p < 1.

It follows from this and the Cauchy-Schwarz inequality that

(7) |y,(l,f?,)- Y,{pt9ù\<kfi - p    forsome/:>0.

If X0 Í ß2, we can construct sequences e¡ -» 0, p, -» Î (h < P¡ < 1) such that

fc^/l - Pi < £,/3 and A"0|3D is a contractible curve in A U M(e,/3). After possibly

passing to a subsequence, we can arrange that Y¡\dD be a contractible curve in

A U M(2e,/3), while y,|3£> is a noncontractible curve in A U M(2e,/3). Let Ä,- =

{(r, 8) g Z): p,- < r < 1, 0 =* 0,} be an annular region slit along a line segment S¡

(see Figure 2). It follows from (7) that y,(5,) ç A U M(e,), so that if Z,: D -» En + l

is a reparametrization of Y¡\R¡, Z¡\dD is noncontractible in A U M(e,), and thus

{Z,} g ß3. On the other hand, it follows from (6) that

■ 2JR\\ du
+

3 y

3i-
dudv < E(Y¡) - c,

and hence

p3 < liminf £(Z,) ^ liminf E(Y¡) - c < ju3 - c,

a contradiction.

Thus A"0 is indeed an element of ß2 and E(X0) = p2. A0 is harmonic and a

standard argument shows that it is conformai and minimizes area. It now follows

from Jäger's boundary regularity theorem [J, Theorem 3] that X0 extends to a

smooth map X0: D -» £" + 1 such that X0(dD) ç M. In other words, X0 G ßj and

E( X0) = p,x. Since ßt ç ß0, X0 g ß0 and £( X0) = p0.
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Figure 2

4. Conclusion of the proof. We suppose that A" + l is not simply connected and

derive a contradiction. Let X0: D -> E"+l be the element of ß0 fl ß, which

minimizes energy and area which we constructed in §3, a conformai branched

minimal immersion. It is crucial to observe that if v is the unit normal to M along

X0(dD) which points out of XQ(D), v points into A. If not, the disk could be pushed

slightly in the direction of -v, decreasing the area but remaining within ß0; this

would contradict the fact that X0 minimizes area in ß0.

Let ex, e2,..., en+x be a constant orthonormal frame for E"+l. If p G D is not a

branch point of X0, we set ej(p) = component of e¡ tangent to X0(D) at p,

ef-(p) = component of e¿ perpendicular to X0(D) at p. As in §2, ej and ef extend

to smooth E" + '-valued functions on D, because the Gauss map extends smoothly to

the branch points.

Now we apply the second variation formula (1) to obtain

(8) _ I(e- ,et) = j "_ (H^)i2 -\\d(er)T() dA
,-i ■/o,-iv

n + l

+ f.    Y,a(ef-,ef-)-vds.
¿■An ■

r   "»-,     / . \

'80/-1

Since e, is constant, d(ej) = -d(ef-), and hence

n + I 2 // + 1 2 n+\

i-l / = ! /./ = 1

1 4   1

-    E   [-^^(e/)]2=   _H^)T||

Thus (8) simplifies to become

(9) Zi(*f.'r)-( Z*(ef>*r)-'*.
■"an'3D

1 = 1
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Given a point p g 3£>, we can choose a new orthonormal frame (ê,,... ,ën+x) for

E" + 1 so that ën is tangent to dD and ën + x is perpendicular to M. The new frame is

related to the old by a transformation
n + 1

e =  Y b ë
j-l

where (A,..) is an (« + 1) X (n + 1) orthogonal matrix. Hence

,-1 i.j,k-i f-i i-1

from which it follows that
»? + 1 b—1

E«!«/1.**1)1'" L «(«/. ê,) • y < A - «j.
/-i <-i

Now (9) yields the inequality
n+l

r-1

By hypothesis, A - k, < 0, so there exists at least one e'¡ with /(e/-, ef) < 0, and a

variation in this direction will decrease area. This contradicts the fact that our disk

has least area, and the theorem is proven.
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