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A PROBLEM OF SALLEE

ON EQUIDECOMPOSABLE CONVEX BODIES1

R. J. GARDNER

Abstract. We show that equidecomposable planar convex bodies need not be

convex equidecomposable. This answers a question of Sallee. We also show that

convex and scissors equidecomposability are equivalent notions for convex bodies in

the plane, and include a discussion of these concepts in higher dimensions.

The Wallace-Bolyai-Gerwien theorem, proved in the last century, says that if

polygons A and B are of equal area, polygon A may be cut into triangles which may

then be rearranged to form polygon B. In modern terminology, we say that A and B

are geometrically equidecomposable; this means (i) A = Uf.,^!, and B = \Jf=xBj, (ii)

A j and £, are triangles with Af n A° = B° D B° = 0 tôr •■!■'«Ç i ¥= j < * (where

E ° denotes the interior of E) and (iii) 5, = r¡A¡ for suitable isometries r¡, i = 1,...,k,

of R2. In 1924, Tarski introduced a set-theoretic version of such jig-saws. According

to his definition, two sets A and B in R2 are equidecomposable if in the definition

above we replace (ii) by (ii)' A¡ and B¿ are sets with A¡ n A¡ = B¿ n /?■ = 0 for

1 < i + j < k. In [1], Banach and Tarski proved the difficult theorem that two

polygons in the plane are equidecomposable if and only if they are geometrically

equidecomposable. S. Wagon's recently published book [4] is a beautiful exposition

of the deep results in analysis, algebra and topology which were stimulated by [1]

and other related work of the time.

In 1925, Tarski asked the still unanswered question: are a circle (with interior) and

a square of the same area equidecomposable? This led G. T. Sallee to generalize the

notion of geometric equidecomposability to one which can be applied to all convex

bodies (compact, convex sets with nonempty interior). Two planar convex bodies A

and B are said to be convex equidecomposable if in the definition above we replace

(ii) by (ii)" A¡ and 5, are convex bodies with Af n Af. = B° n B° = 0 for

1 < i # j < k. Sallee then asked [3, Problem 1] whether Banach and Tarski's

theorem can be extended to convex bodies; that is, whether two equidecomposable

planar convex bodies must be convex equidecomposable (since the converse is true

by the same (nontrivial) argument that Banach and Tarski used for polygons). The

main purpose of this note is to answer this in the negative.

Received by the editors June 20, 1984 and, in revised form, September 17, 1984.

1980 Mathematics Subject Classification. Primary 52A10; Secondary 52A20.

Key words and phrases. Convex body, equidecomposable, scissors equidecomposable, convex equide-

composable.

'Work done under University of Petroleum and Minerals Research Proposal MS/XRAYPROB/73.

©1985 American Mathematical Society

0002-9939/85 $1.00 + $.25 per page

329



330 R. J. GARDNER

We shall include in our discussion one more type of equidecomposability. The sets

A and B in R2 are called scissors equidecomposable if they satisfy the definition above

with (ii) replaced by either (ii)* A¡ and B¡ are topological discs (images of the closed

unit disc under homeomorphisms of the plane onto itself) with Af n A° —

B° fl B° = 0 for Î < i +j < k, or (ii)** A¡ and B¡ are arcs (images of connected

subsets of the circumference of a circle under homeomorphisms of the plane onto

itself) such that A, and Aj (and B¡ and Bf) meet, if at all, only on endpoints for

1 < i * j < k.

In [2], it is proved that if A and B are elementary convex bodies which are scissors

equidecomposable, then the strictly convex portions of their respective boundaries

dA and dB are also scissors equidecomposable. Here, elementary means that the

boundary consists of a finite number of arcs, each of which is either a line segment

or strictly convex. In [3], Sallee uses this to show that two elementary convex bodies

are convex equidecomposable if and only if they are scissors equidecomposable. He

noted that a positive answer to his Problem 1 would extend the result of [2] to all

convex bodies. Our answer is negative, but we shall begin by stating the appropriate

extension.

Theorem 1 (Dubins, Hirsch and Karush). Suppose Ex and E2 are scissors

equidecomposable convex bodies in R2. Then for i = 1,2, there are finite sets =5?, of line

segments in 3£, such that the sets (3£, \ U«2y) are scissors equidecomposable.

Proof. Follow [2] up to Lemma 13. Using the notation of [2], we have Ex = E+

and E2 = E_, and D = D' = E+. Also, Dk and £>' are convex bodies which are on

opposite sides of the arc p(A). But then p(A) must be a line segment, so A is too.

Therefore K+ + consists of a finite set of line segments (áCx above), and similarly for

K__.

Note that in Theorem 1, one cannot expect the entire boundaries dEx and dE2 to

be scissors equidecomposable. For, by the Wallace-Bolyai-Gerwien theorem, a

square and an equilateral triangle of equal areas are scissors equidecomposable, but

their boundaries have different lengths and so cannot be scissors equidecomposable.

The ideas of [3, Theorem 2] immediately give

Theorem 2. Two planar convex bodies are convex equidecomposable if and only if

they are scissors equidecomposable.

We now proceed to the examples.

Theorem 3. There are two equidecomposable planar convex bodies which are not

convex equidecomposable.

Proof. Let C„, n = 1,2,..., be a sequence of disjoint closed arcs of the unit circle

C = {(x, y): x2 + y2 = 1} such that each C„ is contained in the first quadrant,

C„ -» {(0,1)} as n -» oo, and C„+1 lies between Cn and the point (0,1). For each n,

suppose the endpoints of C„ are an and bn, and let Ln be the closed line segment

[a„, A,,]. We define the convex body H to be the one whose boundary is dH =

(C\U™=xCn)UÖ~=xL„.
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If A is a set, let tA be the set obtained by rotating A anticlockwise by m/2 about

the origin. Denote by K the convex body whose boundary is

dK c\\ U c2n+1 u IJ tC2„
H-0 «=1

U  U L2n + X U  IJ tL2„.
n=0 n=l

We show that 3// and dK are equidecomposable, using only rotations about the

origin; the equidecomposability of H and K follows. Let Ax = {J™_xC2n, A2 =

U^=iL2„and

r . .  -,

A, c\\ U c„ u IJ tC2„
»1 = 1 »1=1

ö U i2»+v
n = 0

Then 3// = tAx U A2U A3 and 3# = Ax U t^12 U A3, where these unions are dis-

joint.

Finally, we show that H and K are not convex equidecomposable. If they were,

there would be finite sets Jifand Jtoi line segments in dH and dK respectively, such

that (dH\\J^f) and (dK\\JJf) are scissors equidecomposable. (Although this

follows from Theorem 1, it is easy to see directly.) Thus there is an arc J in dH such

that (i) U^= NLn c J for some N, and (ii) dK contains a congruent copy of /. Since (i)

and (ii) are clearly contradictory, the theorem is proved.

Note that in view of Theorem 2, the equidecomposable convex bodies H and K

above are not scissors equidecomposable.

By replacing the line segments Ln of Theorem 3 with suitably chosen smooth,

strictly convex arcs, one can show that there are even smooth and strictly convex

equidecomposable planar sets which are not convex equidecomposable.

In higher dimensions, equidecomposability and convex equidecomposability are

defined simply by substituting R" for R2 in the definitions above. To deal with

scissors equidecomposability, we need some definitions. A cell in R" is the image of

the sphere S"-1 and its interior under a homeomorphism; if the homeomorphism is

from R" onto itself we call the cell tame. There are several possibilities here, but for

the purposes of this paper we shall define two sets A and B in R" (« > 3) to be

scissors equidecomposable if condition (ii) above is replaced by (ii)+ Ai and B¡ are

tame cells with Af n Af = B° n B° = 0 for 1 < i # / < it.

The whole nature of equidecomposability changes in R" for n > 3, in view of the

famous Banach-Tarski paradox. In fact [1] any two bounded sets in R" (n > 3) with

nonempty interiors are equidecomposable. Quite independently of this, our last

theorem shows that Theorem 2 is no longer valid in higher dimensions. Once again,

a modification will produce examples which are smooth and strictly convex.

Theorem 4. There are two scissors equidecomposable convex bodies in R3 which are

not convex equidecomposable.

Proof. The convex bodies concerned are three-dimensional versions of those in

Theorem 3. On the unit sphere 5 in R3, let SH, n = 1,2,..., be a sequence of disjoint

closed spherical caps with centres contained in S and in the first quadrant of the

yz-plane, such that Sn -» {(0,0,1)} as n -» oo and Sn+X lies between Sn and (0,0,1).
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Let Dn be the ñat disc with the same boundary as S„. Then H' is the convex body

whose boundary is dH' = (S\(Jf_xS„) U \J™=1D„, and K' is the convex body such

that

dK' =
(00 00

U s2n+x u IJ ts2„
n = 0 »i = l

U U D2n + X U  IJ rD2n,
»1 = 0 »1 = 1

where t now denotes anticlockwise rotation about the origin by 7r/2 in the yz-plane.

It will suffice to show that H' and K' are scissors equidecomposable, since the

proof that they are not convex equidecomposable is analogous to that in Theorem 3.

Let Tx be a tame cell contained in 5 and its interior and also in the half-space { v:

y > 0}, such that Tx n S = ü^xS2n U {(0,0,1)). Let T2 be the tame cell such that

37; = (37\ \U-=152„) U U^xD2n. Lastly, let

V=d(H'\(rTx U T2)) = cl(K'\(Tx U tT2)),

and put T3 = V C\ {x: x > 0} and T4= V n {x: x < 0). It is not difficult to see

that r3 and T4 are tame cells. Now H' = jTx U T2 U r3 U r4 and K' = Tx U tT2 U

7; U T4, where the sets in each of these unions have disjoint interiors. This

completes the proof.
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