EQUIVARIANT K-THEORY AND REPRESENTATIONS OF HECKE ALGEBRAS

GEORGE LUSZTIG1

ABSTRACT. We construct some representations of the Hecke algebra of an affine Weyl group using equivariant K-theory and state a conjecture on some q-analogs of the Springer representations.

- 1. This paper contains a new construction of the principal series representations of the Hecke algebra of an affine Weyl group, in terms of the equivariant K-theory of a flag manifold. The formulas defining the simplest operators in these representations are q-analogs of operators considered earlier by Demazure [1]. The results in this paper were found during a visit to the Tata Institute of Fundamental Research, Bombay, in December 1983; I am grateful to D. N. Verma for some stimulating discussions.
- 2. We recall (cf. Segal [4]) that if X is a compact topological space with a continuous action of a compact topological group M', then the equivariant K-theory $K_{M'}(X)$ is defined as the Grothendieck group of the category whose objects are the M'-equivariant complex vector bundles on X and the morphisms are M'-equivariant maps with locally constant rank. Then $K_{M'}(X)$ is naturally an $R_{M'}$ -module where $R_{M'} = K_{M'}$ (point) is the representation ring of M', i.e. the Grothendieck group of the category of finite dimensional continuous complex representations of M'.
- 3. We shall need a variant of this definition, in which M' is replaced by a complex Lie group M underlying a (not necessarily connected) reductive complex algebraic group. We assume that M acts continuously on the compact topological space X, and we wish to define $K_M(X)$.

According to Mostow (see [2, Chapter XV]), M has maximal compact subgroups, any two such are conjugate and any connected component of the normalizer in M of a maximal compact subgroup M', meets M'. We shall construct, for any two maximal compact subgroups M' and M'' of M, a canonical isomorphism $\phi_{M',M''}: K_{M'}(X) \xrightarrow{\sim} K_{M''}(X)$ as follows. Choose $g \in M$ such that $gM''g^{-1} = M'$. If E is an M'-equivariant vector bundle on X, we define a new vector bundle g^*E on X as the inverse image of E under the map $X \to X$, $x \mapsto gx$. It is clear that g^*E is naturally an M''-equivariant vector bundle on X and $\phi_{M',M''}$ is defined by $E \mapsto g^*E$. To show that $\phi_{M',M''}$ is independent of the choice of g, we may assume that M' = M'' and that $g \in M$ normalizes M'; we must show that $g^*E \approx E$ as M'-equivariant vector bundles. Since the isomorphism class of g^*E does not change when g runs through a fixed connected component of the normalizer of M', and since M' meets each such component, we can further assume that $g \in M'$. In this

Received by the editors August 12, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 22E50; Secondary 18F25, 16A99.

¹Supported in part by the National Science Foundation.

case, the M'-equivariant structure of E defines an isomorphism $E_x \xrightarrow{g} E_{gx} = (g^*E)_x$ for all $x \in X$ and hence an isomorphism $g^*E \approx E$ as desired.

The isomorphisms $\phi_{M',M''}$ have an obvious transitivity property. We may therefore define $K_M(X)$ to be $\varprojlim K_{M'}(X)$ (limit over all maximal compact subgroups M' of M, with respect to the isomorphisms $\phi_{M',M''}$). Then we have natural isomorphisms $K(X) \xrightarrow{\sim} K_{M'}(X)$ for any maximal compact subgroup $M' \subset M$. It also follows that $K_M(X)$ is naturally an R_M -module where $R_M = K_M(\text{point})$ is the representation ring of M, i.e. the Grothedieck group of the category of finite dimensional complex algebraic representations of M. (Note that $R_M \xrightarrow{\sim} R_{M'}$ for any maximal compact subgroup $M' \subset M$.)

4. We now consider a simple, simply connected complex algebraic group G and X = G/B, where B is a Borel subgroup of G. Then $M = G \times \mathbb{C}^*$ acts on X as follows: G acts by left translation and \mathbb{C}^* acts trivially. We have $K_M(X) = K_G(X) \otimes R_{\mathbb{C}^*} = K_G(X) \otimes Z[q, q^{-1}]$, where q is the generator of $R_{\mathbb{C}^*}$ corresponding to the identity representation $\mathbb{C}^* \xrightarrow{\sim} \mathbb{C}^*$.

Let T be a maximal torus in B, W the Weyl group of G with respect to T, S the set of simple reflections in W (with respect to B), P the lattice of weights $T \to \mathbb{C}^*$, $R \subset P$ the set of roots and R^+ the set of positive roots (with respect to B).

For each $s \in S$, let P_s be the parabolic subgroup $B \cup BsB$ and let $\pi_s: X \to G/P_s$ be the natural map. There is a unique endomorphism

$$(4.1) T_s: K_M(X) \to K_M(X)$$

with the following property: if E is an M-equivariant algebraic vector bundle on X, then

(4.2)
$$E + T_s E = \pi_s^*(\pi_s)_*(E) - \pi_s^*(\pi_s)_*(E \otimes \Omega_s^1),$$

where Ω_s^1 is the line bundle on X of holomorphic differential 1-forms along the fibres of π_s , regarded as an M-equivariant bundle with the obvious action of G and with the action of \mathbb{C}^* given by scalar multiplication on each fibre of Ω_s^1 . Here $(\pi_s)_*(E)$ is the alternating sum of the higher direct images of E under π_s in the category of coherent sheaves; these higher direct images are again M-equivariant algebraic vector bundles on G/P_s , hence their alternating sum defines an element in $K_M(G/P_s)$.

For any weight $p \in P$, we define an endomorphism

$$\theta_p: K_M(X) \to K_M(X)$$

by

$$\theta_{p}E = E \otimes L_{p}^{*},$$

where L_p is the line bundle on X = G/B associated to the homomorphism $B \to \mathbb{C}^*$ obtained by composing the projection $B \to T$ with $p: T \to \mathbb{C}^*$, and L_p^* is the dual line bundle; we regard L_p^* as an M-equivariant bundle with the obvious action of G and with trivial action of \mathbb{C}^* .

5. The group structure on the lattice of weights P will be written multiplicatively. The Weyl group W acts naturally on P $(w: p \to w(p))$ and we form the semidirect product $\tilde{W} = W \cdot P$ with P normal and $w \cdot p = w(p) \cdot w$ $(w \in W, p \in P)$.

Then \tilde{W} contains the affine Weyl group as a subgroup of finite index. According to Bernstein (see [3, 4.4]) one can describe the Hecke algebra \tilde{H} corresponding to \tilde{W} as follows. It is an algebra over $\mathbf{Z}[q,q^{-1}]$ with generators T_s $(s \in S)$ and θ_p $(p \in P)$ subject to the following relations:

$$(5.1) (T_s + 1)(T_s - q) = 0 (s \in S),$$

$$(5.2) T_s T_t T_s \cdots = T_t T_s T_t \cdots$$

 $(s \neq t \in S; \text{ both sides have } m_{s,t} \text{ factors where } m_{s,t} = \text{order of } st \text{ in } W),$

$$\theta_{p}\theta_{p'} = \theta_{pp'} \qquad (p, p' \in P),$$

(5.4)
$$T_s\theta_p = \theta_p T_s \qquad (s \in S, p \in P, sp = ps),$$

(5.5)
$$T_s\theta_{s(p)}T_s = q\theta_p \qquad (s \in S, p \in P, sps^{-1}p^{-1} = \alpha_s^{-1}).$$

Here $\alpha_s \in \mathbb{R}^+ \subset \mathbb{P}$ is the simple root corresponding to s. We can now state our main result.

THEOREM. The endomorphisms T_s , θ_p of $K_M(X)$ defined in §4 give rise to a left \tilde{H} -module structure on $K_M(X)$. (The action of $\mathbf{Z}[q,q^{-1}]\subset \tilde{H}$ is defined to be the same as the restriction to $R_{\mathbf{C}^*}$ of the earlier action of R_M .) This \tilde{H} -module structure commutes with the R_M -module structure on $K_M(X)$.

The proof will be given in §8.1.

6. We now fix a unipotent element $u \in G$. Let $\phi: \operatorname{SL}_2(\mathbf{C}) \to G$ be an algebraic homomorphism such that $u = \phi(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix})$ and let D be the group of diagonal matrices in $\operatorname{SL}_2(\mathbf{C})$. We define

$$M_u = \{(q, \lambda) \in G \times \mathbf{C}^* | q^{-1}uq = u^{\lambda}, \ q \in Z_G(\phi(D))\}.$$

(Note that any complex power of a unipotent element is well defined.) Then M_u is a reductive algebraic subgroup of $G \times \mathbb{C}^*$; if u = e then $M_u = M$ of §4. Let $X_u = \{g_1B \in X | g_1^{-1}ug_1 \in B\}$; it is a closed subvariety of X = G/B with an action of M_u given by $(g, \lambda): g_1B \to gg_1B$. We now fix a connected component c of M_u and let $M_{u,c}$ be the inverse image under $M_u \to M_u/M_u^0$ of the cyclic group in M_u/M_u^0 generated by the image of c. The $R_{M_{u,c}}$ -module $K_{M_{u,c}}(X_u)$ is defined as in §2. Restriction of vector bundles gives rise to a homomorphism of $R_{M_{u,c}}$ -modules

$$(6.1) R_{M_{u,c}} \otimes_{R_M} K_M(X) \to K_{M_{u,c}}(X_u).$$

(We regard $R_{M_{u,c}}$ as an R_M -module, via the homomorphism $R_M \to R_{M_{u,c}}$ induced by the inclusion $M_{u,c} \subset M$.) Now let $\overline{R}_{M_{u,c}}$ be the ring $R_{M_{u,c}}/J$, where J is the ideal of $R_{M_{u,c}}$ consisting of all $E \in R_{M_{u,c}}$ whose character is identically zero on c. Then from (6.1) we get a homomorphism of $\overline{R}_{M_{u,c}}$ -modules

$$\overline{R}_{M_{u,c}} \otimes_{R_M} K_M(X) \to \overline{R}_{M_{u,c}} \otimes_{R_{M_{u,c}}} K_{M_{u,c}}(X_u).$$

We have a natural surjective homomorphism $M_{u,c} \to \mathbf{C}^*$, $(g,\lambda) \to \lambda$; it induces a ring homomorphism $R_{\mathbf{C}^*} \to R_{M_{u,c}}$ and we shall denote the image of $q \in R_{\mathbf{C}^*}$ in $\overline{R}_{M_{u,c}}$ again by q. We can now state the following conjecture.

CONJECTURE. There exists a natural left $ilde{H}$ -module structure on

$$\overline{R}_{M_{u,c}} \otimes_{R_{M_{u,c}}} K_{M_{u,c}}(X_u)$$

with the following properties:

(a) It is compatible under (6.2) with the \tilde{H} -module structure on

$$\overline{R}_{M_{n,c}} \otimes_{R_M} K_M(X)$$

deduced by extension of scalars from the \tilde{H} -module structure on $K_M(X)$ described in the Theorem.

(b) The action of θ_p $(p \in P)$ on

$$\overline{R}_{M_{u,c}} \otimes_{R_{M_{u,c}}} K_{M_{u,c}}(X_u)$$

is by tensor product with the restriction of L_n^* to X_u (see (4.4)).

- (c) It commutes with the $\overline{R}_{M_{u,c}}$ -module structure, and $q \in \widetilde{H}$ acts in the same way as $q \in \overline{R}_{M_{u,c}}$.
- 7. Assuming the conjecture, let us consider a semisimple element $s \in G$ such that $(s, q_0) \in M_u$ for some $q_0 \in \mathbb{C}^*$. Let c be the component of M_u containing s. Let

$$\tilde{H}(q_0) = \mathbf{C} \otimes_{\mathbf{Z}[q,q^{-1}]} \tilde{H},$$

where C is regarded as a $\mathbf{Z}[q,q^{-1}]$ -module with q acting as multiplication by q_0 . Let $h_s\colon R_{M_{u,c}}\to \mathbf{C}$ be the ring homomorphism defined by $E\to \mathrm{Tr}(s,E)$ ($E\in R_{M_{u,c}}$). This homomorphism factors through $\overline{R}_{M_{u,c}}$, since $s\in c$. Consider the tensor product

$$F_{u,s} = \mathbf{C} \otimes_{R_{M_{u,c}}} K_{M_{u,c}}(X_u),$$

where C is regarded as a $R_{M_{u,c}}$ -module via h_s . Note that $F_{u,s}$ is a finite dimensional C-vector space. (Indeed by a theorem of Segal [4], $K_{M_{u,c}}(X_u)$ is a finitely generated $R_{M_{u,c}}$ -module.) The conjecture implies that there is a natural left $\tilde{H}(q_0)$ -module structure on $F_{u,s}$. It is a q-analog of the W-representations of Springer, which were extended to \tilde{W} by S. Kato (Nederl. Akad. Wetensch. Proc. Ser. A 86 (1983), 193–201).

8. Proof of the theorem. It is well known that the elements $L_p \in K_G(X)$ $(p \in P)$ form a **Z**-basis of $K_G(X)$. Thus $K_G(X)$ may be identified with the group ring $\mathbf{Z}[P]$. It is also known that under this identification the canonical ring homomorphism $R_G \to K_G(X)$ becomes the inclusion of the W-invariants $\mathbf{Z}[P]^W$ into $\mathbf{Z}[P]$. It follows that we may identify $K_M(X)$ with $\mathcal{R}_0 = \text{group ring of } P$ over $\mathbf{Z}[q,q^{-1}]$ and the canonical ring homomorphism $R_M \to K_M(X)$ with the inclusion $\mathcal{R}_0^W \to \mathcal{R}_0$. We shall denote by \mathcal{R} the quotient field of \mathcal{R}_0 . With these identifications, the map $T_s \colon K_M(X) \to K_M(X)$ becomes the $\mathbf{Z}[q,q^{-1}]$ -linear map $T_s \colon \mathcal{R}_0 \to \mathcal{R}_0$ given by

(8.1)
$$T_s(\lambda) = \frac{\lambda - s(\lambda)}{\alpha_s - 1} - q \frac{\lambda - s(\lambda)\alpha_s}{\alpha_s - 1} \qquad (\lambda \in P).$$

Note that this is a priori an element of \mathcal{R} . But it is easily seen that it is actually in \mathcal{R}_0 . (If we specialize q to 1 this is just the action $\lambda \to s(\lambda)$ of W on P. If we

specialize q to 0 we obtain essentially Demazure's operator [1]. Thus our operator (8.1) is the simplest possible interpolation between these two special cases.)

The map $\theta_p: K_M(X) \to K_M(X)$ becomes with the previous identifications the $Z[q, q^{-1}]$ -linear map $\theta_p: \mathcal{R}_0 \to \mathcal{R}_0$ defined by

(8.2)
$$\theta_p(\lambda) = \lambda p^{-1}.$$

We must show that the endomorphisms (8.1), (8.2) of \mathcal{R}_0 verify the identities (5.1)–(5.5).

The identities (5.1), (5.3) and (5.4) are immediate. Now let $s \neq t$ be two simple reflections in S and let $\langle s,t \rangle$ be the subgroup of W they generate. Let $\Phi_{s,t}$ be the set of roots which are **Z**-combinations of the simple roots α_s, α_t and let $\Phi_{s,t}^+ \cup \Phi_{s,t}^-$ be its partition into positive and negative roots. Let $\rho_{s,t}$ be the element of P such that

$$\rho_{s,t}^2 = \prod_{\alpha \in \Phi_{*,*}^+} \alpha.$$

Let

$$\Psi^+ = \prod_{lpha \in \Phi_{a,t}^+} (1 - qlpha), \qquad \Psi^- = \prod_{lpha \in \Phi_{a,t}^-} (1 - qlpha).$$

For any element $\xi \in \mathcal{R}_0$ we define $\mathrm{Alt}_{s,t}(\xi) = \sum_{w \in \langle s,t \rangle} (-1)^{l(w)} w(\xi)$, where l is the length function on W.

We denote the product $T_sT_tT_s\cdots(i \text{ factors})$ by $T_{s,i}$ and similarly we denote the product $T_tT_sT_t\cdots(i \text{ factors})$ by $T_{t,i}$. With these notations we state the following identity which is verified by direct computation. (Here m = order of st in W.)

(8.3)
$$\left(1 + \sum_{1 \leq i \leq m} T_{s,i} + \sum_{1 \leq i \leq m-1} T_{t,i}\right) (\lambda)$$

$$= \operatorname{Alt}_{s,t}(\lambda \rho_{s,t} \Psi^{-}) \cdot (\operatorname{Alt}_{s,t}(\rho_{s,t}))^{-1} \qquad (\lambda \in P).$$

The right-hand side of this identity is symmetric in s, t. Hence so is the left-hand side. It follows that $T_{s,m} = T_{t,m}$ and (5.2) follows. (Alternatively, one can use the following identity:

$$\left((-q)^m + \sum_{1 \le i \le m} (-q)^{m-i} T_{s,i} + \sum_{1 \le i \le m-1} (-q)^{m-i} T_{t,i} \right) (\lambda)
= \rho_{s,t}^{-1} \Psi^+ \operatorname{Alt}_{s,t}(\lambda) \cdot (\operatorname{Alt}_{s,t}(\rho_{s,t}))^{-1} \qquad (\lambda \in P).)$$

With the assumption of (5.5) we have for $\lambda \in P$:

$$\begin{split} T_s\theta_{s(p)}T_s(\lambda) &= T_s\frac{\lambda - s(\lambda) - q(\lambda - s(\lambda)\alpha_s)}{(\alpha_s - 1)s(p)} \\ &= \frac{1}{\alpha_s - 1}\left(\frac{\lambda - s(\lambda) - q(\lambda - s(\lambda)\alpha_s)}{(\alpha_s - 1)p\alpha_s^{-1}}(1 - q) \right. \\ &\left. - \frac{s(\lambda) - \lambda - q(s(\lambda) - \lambda\alpha_s^{-1})}{(\alpha_s^{-1} - 1)p}(1 - q\alpha_s)\right) \\ &= q\lambda p^{-1} = q\theta_p(\lambda). \end{split}$$

We now show that the operators $T_s, \theta_p : \mathcal{R}_0 \to \mathcal{R}_0$ are \mathcal{R}_0^W -linear. This is trivial for θ_p . For T_s , we have the following multiplicative property (whose proof is trivial):

$$T_s(f \cdot g) = (T_s f) \cdot g + s(f) \cdot T_s(g) - qs(f) \cdot g$$

for any $f,g\in\mathcal{R}_0$. If f=s(f), then clearly $T_sf=qf$ so that $T_s(f\cdot g)=f\cdot T_s(g)$. In particular, if $f\in\mathcal{R}_0^W$, then $T_s(f\cdot g)=f\cdot T_s(g)$ for all $g\in\mathcal{R}_0$ and all $s\in S$. This shows that T_s is \mathcal{R}_0^W -linear.

9. Remarks. (a) By a theorem of Pittie, \mathcal{R}_0 is a free \mathcal{R}_0^W -module of rank |W|. (b) The formula (8.3) has the following interpretation. Let $P_{s,t}$ be the parabolic subgroup $\bigcup_{w \in \langle s,t \rangle} BwB$ and let $\pi_{s,t}$ be the natural map $G/B \to G/P_{s,t}$. Let us define T_w for $w \in W$ as $T_{s_1}T_{s_2}\cdots T_{s_r}$, where $s_1s_2\cdots s_r$ is a reduced expression for W. Then for any M-equivariant algebraic vector bundle E on X = G/B, we have

$$\sum_{w \in \langle s,t \rangle} T_w E = \sum_i (-1)^i \pi_{s,t}^*(\pi_{s,t})_* (E \otimes \Omega_{s,t}^i),$$

where $\Omega_{s,t}^i$ is the vector bundle on X of holomorphic differential *i*-forms along the fibres of $\pi_{s,t}$ regarded as an M-equivariant bundle with the obvious action of G and with the action of \mathbb{C}^* given by scalar multiplication by z^i on each fibre. (Compare (4.2).)

REFERENCES

- M. Demazure, Une nouvelle formule des caractères, Bull. Soc. Math. France (2) 98 (1974), 163-172.
- 2. G. Hochschild, The structure of Lie groups, Holden-Day, San Francisco, Calif., 1965.
- G. Lusztig, Some examples of square integrable representations of semisimple p-adic groups, Trans. Amer. Math. Soc. 277 (1983), 623-653.
- 4. G. Segal, Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129-151.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139