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EQUIVARIANT K-THEORY
AND REPRESENTATIONS OF HECKE ALGEBRAS

GEORGE LUSZTIG!

ABSTRACT. We construct some representations of the Hecke algebra of an
affine Weyl group using equivariant K-theory and state a conjecture on some
g-analogs of the Springer representations.

1. This paper contains a new construction of the principal series representa-
tions of the Hecke algebra of an affine Weyl group, in terms of the equivariant
K-theory of a flag manifold. The formulas defining the simplest operators in these
representations are g-analogs of operators considered earlier by Demazure [1]. The
results in this paper were found during a visit to the Tata Institute of Fundamen-
tal Research, Bombay, in December 1983; I am grateful to D. N. Verma for some
stimulating discussions.

2. We recall (cf. Segal [4]) that if X is a compact topological space with a
continuous action of a compact topological group M’, then the equivariant K-theory
K (X) is defined as the Grothendieck group of the category whose objects are the
M’-equivariant complex vector bundles on X and the morphisms are M’-equivariant
maps with locally constant rank. Then K (X) is naturally an Rps-module where
Ry = Ky (point) is the representation ring of M’, i.e. the Grothendieck group
of the category of finite dimensional continuous complex representations of M’.

3. We shall need a variant of this definition, in which M’ is replaced by a complex
Lie group M underlying a (not necessarily connected) reductive complex algebraic
group. We assume that M acts continuously on the compact topological space X,
and we wish to define K (X).

According to Mostow (see [2, Chapter XV]), M has maximal compact sub-
groups, any two such are conjugate and any connected component of the normal-
izer in M of a maximal compact subgroup M’, meets M’. We shall construct, for
any two maximal compact subgroups M’ and M" of M, a canonical isomorphism
dmr mr: Kag (X) S Kpgn (X) as follows. Choose g € M such that gM"g=! = M.
If E is an M’-equivariant vector bundle on X, we define a new vector bundle ¢*FE
on X as the inverse image of F under the map X — X, z — gx. It is clear that
g*E is naturally an M"-equivariant vector bundle on X and ¢ a~ is defined by
E — g*E. To show that ¢ am+ is independent of the choice of g, we may assume
that M’ = M” and that ¢ € M normalizes M’; we must show that ¢*E ~ E as
M'-equivariant vector bundles. Since the isomorphism class of g* E does not change
when ¢ runs through a fixed connected component of the normalizer of M’, and
since M’ meets each such component, we can further assume that g € M’. In this
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case, the M’-equivariant structure of E defines an isomorphism E, % Egz = (9*E):
for all z € X and hence an isomorphism ¢g*E ~ E as desired.

The isomorphisms @ s+ have an obvious transitivity property. We may there-
fore define Kp(X) to be lim Kpp (X) (limit over all maximal compact subgroups
M' of M, with respect to the isomorphisms ¢ p~). Then we have natural iso-
morphisms K(X) = K (X) for any maximal compact subgroup M’ C M. It
also follows that Kjs(X) is naturally an Rps-module where Ry = Kjs(point) is
the representation ring of M, i.e. the Grothedieck group of the category of finite
dimensional complex algebraic representations of M. (Note that Ry — R for
any maximal compact subgroup M’ C M.)

4. We now consider a simple, simply connected complex algebraic group G and
X = G/B, where B is a Borel subgroup of G. Then M = G x C* acts on X
as follows: G acts by left translation and C* acts trivially. We have Ky (X) =
Ke(X)®Rc» = Kg(X)®Z[q,q~!], where q is the generator of Rg- corresponding
to the identity representation C* = C*.

Let T' be a maximal torus in B, W the Weyl group of G with respect to T, S the
set of simple reflections in W (with respect to B), P the lattice of weights T — C*,
R C P the set of roots and Rt the set of positive roots (with respect to B).

For each s € S, let P, be the parabolic subgroup BUBsB and let ms: X — G/ P,
be the natural map. There is a unique endomorphism

(4.1) Ty: Kpr(X) — K (X)

with the following property: if E is an M-equivariant algebraic vector bundle on
X, then

(4.2) E+TsE =m}(ms)(E) — 72(7s)«(E ® Q}),

where (1} is the line bundle on X of holomorphic differential 1-forms along the
fibres of s, regarded as an M-equivariant bundle with the obvious action of G
and with the action of C* given by scalar multiplication on each fibre of (1. Here
(ms)«(E) is the alternating sum of the higher direct images of E under 7, in the
category of coherent sheaves; these higher direct images are again M-equivariant
algebraic vector bundles on G/P;, hence their alternating sum defines an element
in Kp(G/Ps).
For any weight p € P, we define an endomorphism

(4.3) 0,: Knt(X) — Kpr(X)
by
(4.4) 0,E=E®L},

where Ly, is the line bundle on X = G/B associated to the homomorphism B — C*
obtained by composing the projection B — T' with p:T — C*, and Lj, is the dual
line bundle; we regard L; as an M-equivariant bundle with the obvious action of
G and with trivial action of C*.

5. The group structure on the lattice of weights P will be written multiplica-
tively. The Weyl group W acts naturally on P (w:p — w(p)) and we form the
semidirect product W = W - P with P normal and w-p = w(p)-w (w € W, p € P).
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Then W contains the affine Weyl group as a subgroup of finite index. According to
Bernstein (see [3, 4.4]) one can describe the Hecke algebra H corresponding to W
as follows. It is an algebra over Z[q, ¢~ 1] with generators T (s € S) and 8, (p € P)
subject to the following relations:

(5.1) (To+1)(T: -¢)=0 (s€9),

(5.2) T.T,T, - =T,T.T,

(s # t € S; both sides have m,, factors where m,; = order of st in W),
(5.3) Op0p = Opp (p,p’ € P),

(5.4) Ts0p, = 0,T, (s€ S,pe P,sp = ps),

(5.5) To0sp)Ts = q0p (seS,pe Pspsip~l =a7t).

Here a; € RT C P is the simple root corresponding to s. We can now state our
main result.

THEOREM. The endomorphisms Ty, 6, of Kp(X) defined in §4 give rise to a
left H-module structure on Kps(X). (The action of Z]q,q~'] C H 1is defined to be
the same as the restriction to Rc- of the earlier action of Rpr.) This H-module
structure commutes with the Rar-module structure on Kp(X).

The proof will be given in §8.1.

6. We now fix a unipotent element u € G. Let ¢: SL2(C) — G be an algebraic
homomorphism such that u = ¢(§ 1) and let D be the group of diagonal matrices
in SLy(C). We define

M, ={(9,)) € G x C*lg~"ug = u*, g € Zg(4(D))}.
(Note that any complex power of a unipotent element is well defined.) Then M,
is a reductive algebraic subgroup of G x C*; if u = e then M,, = M of §4. Let
X, = {g1B € X|g; 'ug; € B}; it is a closed subvariety of X = G/B with an action
of M, given by (g,A):g1B — gg1B. We now fix a connected component ¢ of M,
and let M, . be the inverse image under M,, — M, /M2 of the cyclic group in

M, /M generated by the image of c. The Ry, .-module Ky, ,(X.) is defined as
in §2. Restriction of vector bundles gives rise to a homomorphism of Ry, .-modules

(6.1) Rum, . ®ry Km(X) — K, (Xu)-

(We regard Ru, . as an Rp-module, via the homomorphism Ry — Ry, . induced
by the inclusion M, . C M.) Now let Ry, . be the ring Ry, ./J, where J is the
ideal of Ry, . consisting of all E € Ry, . whose character is identically zero on c.
Then from (6.1) we get a homomorphism of Ry, ,-modules

(6.2) R, . ®ry KM(X) = Ry, ®ry, . Ku, (Xu)

We have a natural surjective homomorphism M, . — C*, (g,A) — A; it induces
a ring homomorphism Rc- — Ry, , and we shall denote the image of ¢ € Rc- in
—RMM again by ¢. We can now state the following conjecture.
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CONJECTURE. There ezists a natural left H-module structure on
Ru,. ®ry, . Ku,  (Xu)

with the following properties: 5
(a) It is compatible under (6.2) with the H-module structure on

RM,‘_C ®RM KM(X)

deduced by extension of scalars from the H-module structure on K M(X) described
in the Theorem.
(b) The action of 8, (p € P) on

RMu,c ®RM“_C KMu,c (Xu)

is by tensor product with the restriction of Ly, to X, (see (4.4)).
(c) It commutes with the R, .-module structure, and q € H acts in the same
way as ¢ € Ry, ..

7. Assuming the conjecture, let us consider a semisimple element s € G such
that (s,qo) € M, for some go € C*. Let ¢ be the component of M, containing s.
Let 5 5

H(qo) = C ®z(g,¢-1) H,

where C is regarded as a Z[g, ¢~ !]-module with g acting as multiplication by gq.
Let hs: Ry, , — C be the ring homomorphism defined by E — Tr(s,E) (E €
Ru, ). This homomorphism factors through Ry, ., since s € ¢. Consider the
tensor product

Fu,s =C ®RM,‘_C KM,._C (Xu)y

where C is regarded as a Ry, .-module via h,. Note that F, , is a finite dimensional
C-vector space. (Indeed by a theorem of Segal [4], K, . (X, ) is a finitely generated
Ry, .-module.) The conjecture implies that there is a natural left H (go)-module
structure on F, ,. It is a g-analog of the W-representations of Springer, which were
extended to W by S. Kato (Nederl. Akad. Wetensch. Proc. Ser. A 86 (1983),
193-201).

8. Proof of the theorem. It is well known that the elements L, € Kg(X)
(p € P) form a Z-basis of Kg(X). Thus Kg(X) may be identified with the group
ring Z[P]. It is also known that under this identification the canonical ring ho-
momorphism Rg — K¢ (X) becomes the inclusion of the W-invariants Z[P]" into
Z[P]. It follows that we may identify K (X) with Ro = group ring of P over
Z[g,q7!] and the canonical ring homomorphism Rpas — Kp(X) with the inclu-
sion RY — Ro. We shall denote by R the quotient field of Ry. With these
identifications, the map T,: Kp(X) — Ka(X) becomes the Z[g, ¢~ !]-linear map
Ts: Ro — Ro given by

_A=8(0)  A-s(Nas

(8.1) T,O) = 527 -0y (A e P).

Note that this is a priori an element of R. But it is easily seen that it is actually
in Ro. (If we specialize ¢ to 1 this is just the action A — s()\) of W on P. If we
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specialize q to 0 we obtain essentially Demazure’s operator [1]. Thus our operator
(8.1) is the simplest possible interpolation between these two special cases.)

The map 0,: Kp(X) — Kp(X) becomes with the previous identifications the
Z|q,q " ]-linear map 6,: Ro — Ro defined by
(8.2) 0,(\) = Ap~ L.
We must show that the endomorphisms (8.1), (8.2) of Rg verify the identities (5.1)-
(5.5).

The identities (5.1), (5.3) and (5.4) are immediate. Now let s # t be two simple
reflections in S and let (s,t) be the subgroup of W they generate. Let ®,; be the

set of roots which are Z-combinations of the simple roots a,, a; and let <I>;':t uo;,
be its partition into positive and negative roots. Let p,: be the element of P such

that
pit = H a.

acd},
Let
vi=J] G-q), ¥ = [] (1-qa)
ae@j’)t acd,;,
For any element £ € Ry we define Alt, (&) = Ewe(a,t)(—l)’(w)w(f), where [ is the
length function on W.
We denote the product TsT:Ts - - - (2 factors) by T ; and similarly we denote the

product T3T Ty - - - (3 factors) by T; ;. With these notations we state the following
identity which is verified by direct computation. (Here m = order of st in W.)

53) (1+ Yo Tt ). Tm) @Y

1<2:<m 1<i<m-1
= Alty (Mpss¥7) - (Altse(psr))™> (A€ P).

The right-hand side of this identity is symmetric in s,t. Hence so is the left-hand
side. It follows that T ,, = Tt and (5.2) follows. (Alternatively, one can use the
following identity:

((—Q)’"+ Yo (™ T+ ), (—Q)'"“"Tt,i) ()

1<i<m 1<i<m—1
=P VT Alte 1 (A) - (Altae(pae))™ (A€ P).)
With the assumption of (5.5) we have for A € P:

T8y T(A) = T, A= 5(A) — g(A = s(Nay)

(as — 1)s(p)
L (A=3()) —g(A = s(N)as)
_as—l( (s — 1)pas? (1-q)
- #3) - /\(;s—ql(s_(i))p_ Aas_l) (1- qas)>

= gAp~! = gb,(N).
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We now show that the operators T, 0,: Ro — Ro are RY -linear. This is trivial for
6p. For T,, we have the following multiplicative property (whose proof is trivial):

T.(f - 9) = (Tsf) - g+ s(f) - Ts(9) —qs(f) - ¢

for any f,g € Ro. If f = s(f), then clearly Tsf = qf so that Ts(f - g) = f - Ts(9).
In particular, if f € RY, then Ty(f - g) = f - Ts(g) for all g € R and all s € S.
This shows that T is RY -linear.

9. Remarks. (a) By a theorem of Pittie, Rg is a free R} -module of rank |W|.
(b) The formula (8.3) has the following interpretation. Let P, ; be the parabolic
subgroup Uwe(s,t) BwB and let 7, be the natural map G/B — G/P,;. Let us
define T, for w e W as T, T, - - - Ts,, where 8182 - - - 8, is a reduced expression for
W. Then for any M-equivariant algebraic vector bundle E on X = G/B, we have

Z T E = Z( 1)1, (7|'st (E®Qst)’

wE(s,t)

where (1, , is the vector bundle on X of holomorphic differential i-forms along the
fibres of 7, ; regarded as an M-equivariant bundle with the obvious action of G and
with the action of C* given by scalar multiplication by z* on each fibre. (Compare

(4.2).)
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