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EQUIVARIANT if-THEORY
AND REPRESENTATIONS OF HECKE ALGEBRAS

GEORGE LUSZTIG1

ABSTRACT. We construct some representations of the Hecke algebra of an

affine Weyl group using equivariant K-theory and state a conjecture on some

«j-analogs of the Springer representations.

1. This paper contains a new construction of the principal series representa-

tions of the Hecke algebra of an affine Weyl group, in terms of the equivariant

if-theory of a flag manifold. The formulas defining the simplest operators in these

representations are q-analogs of operators considered earlier by Demazure [1]. The

results in this paper were found during a visit to the Tata Institute of Fundamen-

tal Research, Bombay, in December 1983; I am grateful to D. N. Verma for some

stimulating discussions.

2. We recall (cf. Segal [4]) that if X is a compact topological space with a

continuous action of a compact topological group M', then the equivariant if-theory

Km> (X) is defined as the Grothendieck group of the category whose objects are the

M'-equivariant complex vector bundles on X and the morphisms are M'-equivariant

maps with locally constant rank. Then Km'(X) is naturally an iu^'-module where

RM, = Km> (point) is the representation ring of M', i.e. the Grothendieck group

of the category of finite dimensional continuous complex representations of M'.

3. We shall need a variant of this definition, in which M' is replaced by a complex

Lie group M underlying a (not necessarily connected) reductive complex algebraic

group. We assume that M acts continuously on the compact topological space X,

and we wish to define Km(X).

According to Mostow (see [2, Chapter XV]), M has maximal compact sub-

groups, any two such are conjugate and any connected component of the normal-

izer in M of a maximal compact subgroup M', meets M'. We shall construct, for

any two maximal compact subgroups M' and M" of M, a canonical isomorphism

4>m',M"'-Km'(X) —* Km"(X) as follows. Choose g e M such that gM"g~1 = M'.
If E is an M'-equivariant vector bundle on X, we define a new vector bundle g*E

on X as the inverse image of E under the map X —» X, x >-> gx. It is clear that

g*E is naturally an M"-equivariant vector bundle on X and 4>m',M" is defined by

E i—> g*E. To show that 4>m',m" is independent of the choice of g, we may assume

that M' = M" and that g £ M normalizes M'; we must show that g*E « E as

M'-equivariant vector bundles. Since the isomorphism class of g*E does not change

when g runs through a fixed connected component of the normalizer of M', and

since M' meets each such component, we can further assume that g G M'. In this
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case, the M'-equivariant structure of E defines an isomorphism Ex —► Egx = (g*E)x

for all x G X and hence an isomorphism g*E sa E as desired.

The isomorphisms 4>m\M" have an obvious transitivity property. We may there-

fore define Km (X) to be lim Ä"M' (X) (limit over all maximal compact subgroups

M' of M, with respect to the isomorphisms 4>m',M")- Then we have natural iso-

morphisms K(X) —» Km'(X) for any maximal compact subgroup M' C M. It

also follows that Km(X) is naturally an i?M-module where Rm — Km (point) is

the representation ring of M, i.e. the Grothedieck group of the category of finite

dimensional complex algebraic representations of M. (Note that Rm —* Rm1 for

any maximal compact subgroup M' C M.)

4. We now consider a simple, simply connected complex algebraic group G and

X = G/B, where B is a Borel subgroup of G. Then M = G x C* acts on X

as follows: G acts by left translation and C* acts trivially. We have Km(X) =

Kg(X)®Rc = Kq(X)® Z[q,q~l], where q is the generator of Re- corresponding

to the identity representation C* ^> C*.

Let T be a maximal torus in B, W the Weyl group of G with respect to T, S the

set of simple reflections in W (with respect to B), P the lattice of weights T —► C*,

R C P the set of roots and R+ the set of positive roots (with respect to B).

For each s G S, let Pa be the parabolic subgroup BUBsB and let 7rs: X —* G/Ps

be the natural map. There is a unique endomorphism

(4.1) TS:KM(X)^KM(X)

with the following property: if E is an M-equivariant algebraic vector bundle on

X, then

(4.2) E + TaE = <(*.).(£) - <(7ra),(£ 9 Í1,1),

where fi* is the line bundle on X of holomorphic differential 1-forms along the

fibres of tts, regarded as an M-equivariant bundle with the obvious action of G

and with the action of C* given by scalar multiplication on each fibre of fi*. Here

(tts)*(E) is the alternating sum of the higher direct images of E under tra in the

category of coherent sheaves; these higher direct images are again M-equivariant

algebraic vector bundles on G/Pa, hence their alternating sum defines an element

in KM(G/Pa).
For any weight p G P, we define an endomorphism

(4.3) 0P:KM{X)-+KM(X)

by

(4.4) OpE = E®L*p,

where Lp is the line bundle onX = G/B associated to the homomorphism B —► C*

obtained by composing the projection B —> T with p: T —► C*, and L* is the dual

line bundle; we regard L* as an M-equivariant bundle with the obvious action of

G and with trivial action of C*.

5. The group structure on the lattice of weights P will be written multiplica-

tively. The Weyl group W acts naturally on P (w.p —► w(p)) and we form the

semidirect product W = W ■ P with P normal and w ■ p = w(p) ■ w (w G W, p G P).
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Then W contains the affine Weyl group as a subgroup of finite index. According to

Bernstein (see [3, 4.4]) one can describe the Hecke algebra H corresponding to W

as follows. It is an algebra over Z[q, ç_1] with generators Ts (s G S) and 9P (p G P)

subject to the following relations:

(5.1) (Ts + l)(Ta - q) = 0       (sgS),

(5.2) TaTtTs ■■■ = TtTsTt ■ ■ ■

(s t¿ t G 5; both sides have ma%t factors where majt = order of si in VF),

(5.3) cW=V       (p,p'gP),

(5.4) TS9P = epTa        (sGS,pGP,sp = ps),

(5.5) Taea{p)Ta = qdp        (s G S,p G P^ps^p-1

Here cta G R+ C P is the simple root corresponding to s

main result.

THEOREM. The endomorphisms Ta, 9P of Km(X) defined in §4 give rise to a

left H-module structure on Km(X). (The action o/Z[(j,c7-1] C H is defined to be

the same as the restriction to Re* of the earlier action of Rm-) This H-module

structure commutes with the Rm-module structure on Km(X).

The proof will be given in §8.1.

6. We now fix a unipotent element uG G. Let <f>: SL2(C) —> G be an algebraic

homomorphism such that u — t/>(¿ i ) and let D be the group of diagonal matrices

in SL2(C). We define

Mu = {(g, A) G G x C^g^ug = u\ gG ZG(4>(D))}.

(Note that any complex power of a unipotent element is well defined.) Then Mu

is a reductive algebraic subgroup of G x C*; if u = e then Mu = M of §4. Let

Xu = {q\B G X\gxlug\ G B}; it is a closed subvariety of X — G/B with an action

of Mu given by (g, \):giB —> gg\B. We now fix a connected component c of Mu

and let MUjC be the inverse image under Mu —> Mu/M^ of the cyclic group in

Mu/M° generated by the image of c. The ÄMu,c-module Kmu,c(Xu) is defined as

in §2. Restriction of vector bundles gives rise to a homomorphism of Rmu¡c-modules

(6-1) RMu,c®rmKm(X)^KmUxu)-

(We regard Rmuc as an i?M-module, via the homomorphism Rm —* Rmu,c induced

by the inclusion MUjC c M.) Now let RmUiC be the ring Rmm¡c/J, where J is the

ideal of Rmuc consisting of all E G Ämu,c whose character is identically zero on c.

Then from (6.1) we get a homomorphism of RmU:C-modules

(6.2) RMuc ®Rm Km(X) -» RMu,c ®ñ„u,e KMu,c(Xu).

We have a natural surjective homomorphism M„,c —+ C*, (g, A) —> A; it induces

a ring homomorphism Re —* Rmu¡c and we shall denote the image of g G Re in

Rmu c again by q. We can now state the following conjecture.

s     )

We can now state our
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CONJECTURE. There exists a natural left H-module structure on

Rmu,c ®rMu,c Kmu¡c(xu)

with the following properties:

(a) It is compatible under (6.2) with the H-module structure on

Rmu,c <S>rm Km(X)

deduced by extension of scalars from the H-module structure on Km(X) described

in the Theorem.

(b) The action of 9P (p G P) on

Rmu,c ®RmUiC Kmu¡c(Xu)

is by tensor product with the restriction of Lp to Xu (see (4.4)).

(c) It commutes with the RMU:C-module structure, and q G H acts in the same

way as q G -Rm„,c •

7. Assuming the conjecture, let us consider a semisimple element s G G such

that (s,qo) G Mu for some go £ C*. Let c be the component of Mu containing s.

Let

H(q0) = C®z[9),-i] H,

where C is regarded as a Z[g,g_1]-module with q acting as multiplication by go-

Let hs:RMu,c ~* C be the ring homomorphism defined by E —» Tr(s,E) (E G

Rmu,c)- This homomorphism factors through Ämu,c, since s G c. Consider the

tensor product

K,a = C ®«MuiC KMu¡c(Xu),

where C is regarded as a ÜMu,c-module via hs. Note that FUtS is a finite dimensional

C-vector space. (Indeed by a theorem of Segal [4], Ämu,c (Xu) is a finitely generated

RmUi„-module.) The conjecture implies that there is a natural left /¿"(go)-module

structure on Pu,3. It is a g-analog of the W-representations of Springer, which were

extended to W by S. Kato (Nederl. Akad. Wetensch. Proc. Ser. A 86 (1983),
193-201).

8. Proof of the theorem. It is well known that the elements Lp G Kq(X)

(p G P) form a Z-basis of Kq(X). Thus Kq(X) may be identified with the group

ring Z[P}. It is also known that under this identification the canonical ring ho-

momorphism Rg —► Kq(X) becomes the inclusion of the W-invariants Z[P]VV into

Z[P]. It follows that we may identify Km(X) with £o = group ring of P over

Z[<j,g-1] and the canonical ring homomorphism Rm —* Km(X) with the inclu-

sion £0V —» £0- We shall denote by R the quotient field of £o- With these

identifications, the map Ts:Km(X) —* Km(X) becomes the Z[q,g_1]-linear map

T3: Zo -» £o Siven by

(8.1) T3(X) = ^^-q^^        (AGP).
a3 - 1 as - 1

Note that this is a priori an element of H. But it is easily seen that it is actually

in £o-  (If we specialize g to 1 this is just the action A —> s(A) of W on P. If we



EQUIVARIANT K-THEORY 341

specialize g to 0 we obtain essentially Demazure's operator [1]. Thus our operator

(8.1) is the simplest possible interpolation between these two special cases.)

The map 9p:Km(X) —» Km(X) becomes with the previous identifications the

Z[q,q~^-linear map 9P: R0 —» R0 defined by

(8.2) t?p(A) = Ap-1.

We must show that the endomorphisms (8.1), (8.2) of Zç, verify the identities (5.1)-

(5.5).
The identities (5.1), (5.3) and (5.4) are immediate. Now let s ^ t be two simple

reflections in S and let (s, t) be the subgroup of W they generate. Let $s,t be the

set of roots which are Z-combinations of the simple roots as, at and let $"¿t U $~t

be its partition into positive and negative roots. Let pS)t be the element of P such

that

pit = n a-

Let

*+=   I]   (l-ga),        9-4   [I   i1'^)-

For any element £ G Ha we define Alts>t(0 = ¿^we(s¿)(-^)l^w(£)i where I is the

length function on W.

We denote the product TsTtTs ■ ■ ■ (i factors) by Ts¿ and similarly we denote the

product TtTsTt ■ ■ ■ (i factors) by Tt>¿. With these notations we state the following

identity which is verified by direct computation. (Here m = order of st in W.)

,i+ E T-+  E v*Y<x)
\°-á> \ l<t<m l<i<m-l J

= Alts,t(Ap,,t*-) • (Alts,t(ps,t))-1       (A G P).

The right-hand side of this identity is symmetric in s, t. Hence so is the left-hand

side. It follows that Ts<m — Tt,m and (5.2) follows. (Alternatively, one can use the

following identity:

(~q)m +   ¿2   i-Q)m~%i +      E     (-<7)m~^     W

l<t<m \<i<m—1 I

= p-}9+ AltM(A) • (Alts,t(Pa,t))_1        (A G P).)

With the assumption of (5.5) we have for A G P:

Tfl      t t\\ _ rr A - s(X) - q(X - s(X)as)

(as - l)s(p)

A - s(X) - q(X - s(A)qs)     _   ,

as - 1 V {a, - l)pcts1

s(X)-X-q(S(X)-Xa7i)     _        \

(or1 - Dp "       (     q s})

= qXp-1 = q9p(X).
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We now show that the operators Ta,9p: Zq —► £o are R™-linear. This is trivial for

Op. For Ta, we have the following multiplicative property (whose proof is trivial):

t(f ■ g) = (TJ) ■ g + s(f) ■ Ta(g) - qs(f) • g

for any /, g G R0. If / = s(f), then clearly Tsf = qf so that Ts(f ■ g) = f ■ Ta(g).
In particular, if / € Rff, then Ta(f ■ g) = f ■ Ta(g) for all g G R0 and all s G S.
This shows that Ta is .S^-linear.

9. Remarks,  (a) By a theorem of Pittie, Ro is a free ^^-module of rank \W\.

(b) The formula (8.3) has the following interpretation. Let PS)t be the parabolic

subgroup LLe(s,t) BwB and let 7rs,t be the natural map G/B —> G/Pa>f Let us

define Tw for w G W as TSlTa2 ■ ■ ■ TSr, where siS2 • • • aT is a reduced expression for

W. Then for any M-equivariant algebraic vector bundle E on X = G/B, we have

£   TWE = Y,(-lY<A*s,tUE ® fis,t),
tu£(s,t) i

where fi* t is the vector bundle on X of holomorphic differential ¿-forms along the

fibres of 7rSit regarded as an M-equivariant bundle with the obvious action of G and

with the action of C* given by scalar multiplication by zl on each fibre. (Compare

(4-2).)
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