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FUNCTIONS WITH A DENSE SET

OF PROPER LOCAL MAXIMUM POINTS

ALFONSO VILLANI1

Abstract. Let X be any metric space. The existence of continuous real functions on

X, with a dense set of proper local maximum points, is shown. Indeed, given any

a-discrete set S cz X, the set of all/ e C(X), which assume a proper local maximum

at each point of S, is a dense subset of C( X). This implies, for a perfect metric space

X, the density in C( X, Y) of "nowhere constant" continuous functions from A' to a

normed space Y. In this way, two questions raised in [2] are solved.

The existence of continuous functions /: R -» R having some proper local

maximum point within each open subset of R is well known. A nice construction of

such a function is given in [1]. In this note we show that continuous real functions

with this property do exist on any metric space X. Indeed, we prove (Theorem 1)

that for every a-discrete set S c X, the set of continuous real functions on X, which

have a proper local maximum at each point of S, is dense in C(X), endowed with a

certain topology which, in general, is strictly finer than that of uniform convergence;

in particular, functions with a dense set of proper local maximum points are dense in

C( X). As a corollary, if X is a perfect metric space, we get the density in C( X, Y) of

nowhere constant continuous functions from X to a normed space Y. This answers

two questions recently raised in [2] and enables us to improve some results

established there.

Throughout, X is a metric space with metric d, y is a normed space with norm || ||,

and C(X,Y) denotes the set of all continuous functions/: X -> Y. When Y = R we

put C(X) = C(X, Y). We denote by t the topology on C(X, Y) in which basic

neighbourhoods of / g C( X, Y ) are the sets

{g^C(X, Y)\\\g(x) -f(x)\\ < e(x) for each* € X)

with e G C(X), e > 0 everywhere in X. It is clear that t is stronger than the topology

v induced by the metric p of uniform convergence, i.e.,

p(/, g) = min{l,sup{||/(x) -g(x)|||jc é X}}.

Moreover, it is easy to realize that t and v coincide if and only if X is compact.
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For subsets of X the term discrete is used here in the following sense: a set D c X

is said to be discrete if D has no accumulation points. A a-discrete set is a countable

union of discrete sets. For collections ^of subsets of X our terminology is standard:

JHs said to be discrete if every point x e X has a neighbourhood meeting at most

one set in J*". A a-discrete collection is a countable union of discrete collections.

Since the definition of discrete set given here is nonstandard, some comments are

necessary. Obviously a discrete set as defined here is also discrete in the usual sense,

i.e., its relative topology is the discrete topology. The converse is not true (e.g.,

X = R, D = {\/n\n = 1,2,...}). Nevertheless, if a set D is discrete in the usual

sense, then it is also a-discrete according to our definition. Indeed, for each p > 0,

the set Z>p = {x ^ D\d(x, D — {jc}) > p} has no accumulation points; hence D =

Up>0Dp = \J™_xDx/n is a-discrete in our sense. It follows that, in a metric space, the

definition of a-discrete set given here and the usual one are equivalent. This is no

longer true in a general topological space. We do not give any explicit proof of the

last remark. However, a counterexample can easily be constructed by the interested

reader in the space of all real functions on R endowed with the topology of

pointwise convergence.

Given a function/: X -» R, we say that relisa proper local maximum point

for / if f(U — {x}) c (-co, f(x)) for some neighbourhood U of x. The set of all

proper local maximum points for/is denoted by M(f). Note that for every t > 0,

the set

M,(/):= {x S X|0 < d(z,x) < t••/(«) </(x)}

is discrete; hence, the set

M(f)= LM(/)=  l)Mx/n(f)
r>0 n=l

is a-discrete. Conversely, Theorem 1 shows that for any a-discrete set S C X there is

always a continuous function/: X -» R such that M(f) 3 S.

For the reader's convenience we state a result from [2] that will be used in the

sequel. By 9%(X, Y) we denote the set of all/ e C(X, Y) which are nowhere constant

(locally nonconstant according to the terminology of [2]), i.e., such that int f~l(y) =

0 for all yey. When Y = R we put é?(X) = &(X, Y). The convex hull of a set

W c y is denoted by conv(W).

Theorem A ([2, Theorem 2.1]). Suppose X is locally connected and Si(X) = 0.

Then, for every function /e C(X, Y) and every positive constant e, there exists a

function g e ¿%(X, Y) such that p(g, f) < e. Moreover, g(X) c conv(f(X))provided

that f is not constant.

To begin, we prove two lemmas.

Lemma 1. Let D c X be a nonempty discrete set. Then there exists a discrete

collection {Bs\s e D) of closed balls with each Bs centered at s.
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Proof. If D is a finite set, then any collection of pairwise disjoint closed balls,

with centers at points of D, is discrete. This is no longer true, in general, if the set D

is infinite. Then we proceed as follows.

For each je G X let dx denote the positive number d(x, D — {x}). Also, fix any

y g (0,^), and denote by Bs, s g D, the closed ball centered at s with radius

r/.= yds. Then {Bs\s eö) isa discrete collection. Indeed, we claim that for every

x g X, any ball Cx with center at x and radius px < (| — y)dx meets at most one

ball Bs. This is proved by contradiction as follows. Assume that Cx n Bs and

Cx O Bs are nonempty for some x e X, sx, s2 G D, sx + s2, and let z\ ^ CXC\ Bs,

i = 1,2. Then dx > max{^J, ds }, for otherwise, assuming for instance ds > dx,

d   > d , we would get the contradiction

d. < d(s,, s7) < d(s,, z,) + d(z,, z,) + d(z-,, s?)\   I-    2/ V   1.     U VI»    2; V    2'    27

< rs + 2px + rs  < y¿s +(1 - 2y)^ + yds

/. -      ̂      .
<Jí/il+(Í-2y)<l + Y^=,áfi        *      ?r

The contradiction

¿^ < í/(x, 5,) < i/(x, z,) + ¿(z,, 5,) < px + rSj

< (Í - VK + K, < (i - yK + Y¿x = ¿x/2

follows, assuming, for instance, íj ^ x, and the lemma is proved. D

Lemma 2. Let <p, 17 g C(X) vwï/z t/ > 0 eueryvv-rjeve m X. Also, let D c X be a

nonempty discrete set and H a closed set with D n H = 0. Then there exist \p g C(X)

and {Bs\s g D}, a discrete collection of closed balls with each Bs centered at s, such

that

(9CU,«iÀ)n/f- 0,
(ii)t/» = 9 ¿M X - U,s0Ä„
(iii) <p < \p < <p + v everywhere in X, and

(iv)\}/(x) < \p(s)for every s g D and x g Bs — {s}.

Proof. By Lemma 1 it is possible to associate a positive number rs with each

s ^ Din such a way that the collection of balls Bs, with center at 5 g D and radius

rs, is discrete. Also, it is clearly possible, decreasing the numbers rs if necessary, to

fulfill condition (i). In the same way, owing to the continuity of tp and n, it can be

assumed that, for every s g D, the inequalities

(*) <p(*) <<p(s) + jv(s) < <p(x) +t](x)

hold at each point x of Bs.

Now define \¡r. X '-* R as follows:

t(x) = <p(x)    if* eX-  [J B5,

*(*) = (1 - r;xd{x, s))(<p(s) + ±n(s)) + r~xd(x, s)y(x)    ifx^Bs,s^D.
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Then, by the discreteness of {Bs\s g D}, \p is well defined and continuous. Also, by

definition, (ii) is satisfied. Finally, having in mind the inequalities ( * ), it is an easy

matter to check the validity of conditions (iii) and (iv). The lemma is therefore

proved. D

Now we prove our main theorem.

Theorem 1. Let /, e G C(X) with e > 0 everywhere in X. Also let S c X be a

nonempty a-discrete set and K C X a closed set with S C\ K = 0. Then there exists

g g C(X) such that

(i)gk = /k,
(Ü)/ < g < / + e everywhere in X, and

(iii) M(g)D 5.

Proof. If S is a discrete set, the existence of such a function g is guaranteed by

Lemma 2. Hence, assume that S is not discrete. Then we have S = U*_0Z>„, with D0,

Dx,... pairwise disjoint nonempty discrete sets. We set En = \J"k^0Dk, n = 0,1,_

We start by applying Lemma 2 with <p = /, v = e/2, D = D0, and H = K.

Accordingly, there exist /0 G C(X) and {Bs\s G D0}, a collection of closed balls

with each Bs centered at s, such that

(1)0 [Bs\s g D0} is a discrete collection of sets,

(2)o(Uje0o^)^^= 0-

(3)0/ = /0inX-UjeDoJßs,

(4)o/ < /o < / + e/2 everywhere in X,

(5)o/o(*) < /o(J) foreverYse/)0andxeßs- {í}.

Next we show by induction that there exist ( fn\n = 1,2,...}, a sequence in C(X),

and [Bs\s g \J™_xDn}, a collection of closed balls with Bs centered at s, such that

the following conditions are satisfied for every n = 1,2,... :

(1)„ { Bs\s g Dn} is a discrete collection of sets,

(2)„(UseflBi)n(XU E„_x)= 0,

(3)„/„=/„-iinX-UseDAî,

(4)„/„-i « fH </«-i + £/2"+1 everywhere in X,

(5)„/„(x) </.(*) for every s g £„andx g Bs - {s},

(6)„ j g D„, t G £„_x, BsnB,* 0 imply 5 G Bt.

To prove this, let us assume that functions/0,...,/„ and balls {Bs\s G En) have

been found in such a way that conditions (l)k-(5)k, k = 0,... ,n, and, if n > 0, also

(6)^, & = \,...,n, are satisfied, and construct /n+1 and {-SJs e Z)n+1} such that

(l)B+1-(6)„+1'hold.

Decompose 2?B+J  as £»n + 1 = Z)„'+1 U Z)„"+1,  with £»„'+1 = £>„ + 1 - U,e£S, and

D"   = n     — D'

If D'n +, = 0 we introduce ft by setting h = /„.

If Z>„'+1 =£ 0 we apply Lemma 2 again, with <p =/„,■») = e/2"+3, Z) = £>„'+1, and

H = K U QJteEBt) (H is a closed set by assumptions (1)A, ifc = 0,...,«). Then there

exist h g C(X) and {Ají g D„'+1}, a collection of closed balls with each Bs

centered at s, such that

(a) {Bs\s G D'n + X} is a discrete collection of sets,

(b) (U,60,  B.) n (X u (U/e£Ä)) = 0,
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(c)h=f„inX-{JseD,Bs,

(d)/„ < h < /„ + e/2" + 3 everywhere in X,

(é)h(x) < h(s) for every s G D'n + X and x ^ Bs - {s}.

Now, consider D'n'+X. If Z)"+1 = 0, then the collection [Bs\s G D„ + 1} has already

been defined; moreover, letting fn + x = h, it is clear, by (a)-(e) and (5)„, that

conditions (l)„ + i-(6)„+1 are fulfilled.

Hence, suppose that D'n'+X ¥= 0 and, according to Lemma 1, let {Us\s g £>n"+1} be

any discrete collection of open balls, with each Us centered at s. Denote by Af, for

each s G D'n'+X, the set {(£ En\s G 5,}. By (\)k, k = 0,... ,n, As contains at most

n + 1 elements. Let rs = min{/„(f) - f„(s)\t g Ay}. By (5)„, ts is a positive number.

Also denote by Cs the union of those balls Bt, (e£sU Aí+i> which do not contain

s. By (l)k, k = 0,...,n, and (a) (if D'n + l # 0 ), Cs is a closed set. Then apply Lemma

2 with<p = /z, ij = i)s = min{e/2n + 3,TJ}, D= {s}, H = K U Cs U A, U (X - I/,).

Accordingly, there exist /iJ g C(X) and Bs, a closed ball with center at s, such that

(ß)sBsczUs,Bsn(KuCsU^)=0,

(y)shs = hinX-Bs,

(d)s h < hs < h + r/J everywhere in X,

(e)5 hs(x) < hs(s) for every x G Ss - {i}.

Do this for each í g ZJ„"+1. Then the collection {5Ji g D„+1) has been defined.

Moreover, having in mind condition (ß)s, s g Z)„"+1, the discreteness of [Us\s G

Z)"+1) and also, if D„'+i * 0> conditions (a)-(b), it is clear that (l)n+1, (2)„+1, and

(6)„+1 are fulfilled. Let/n+1: X -* R be defined as follows:

fn + x(x) = h(x)    ifxGX-    IJ    B„

fn+i(x) = hs(x)   ÜxeB„seD£.

By (l)n + i»/n + i is well defined; also, by (1)„ + 1 and (y)s, s g Z>„"+1, it is a continuous

function. Moreover, using conditions (S)s, s g D¡/+x, and, as usual, (c)-(d), if

D'1 + x =£ 0, it is easy to check the validity of (3)„ + 1-(4)„ + 1. Let us show that also

(5)n+1 is satisfied. This will conclude the inductive argument. Let s G En + X, x g Bs

- {s}. First assume s g £„, so/n+1(j) =/„(j) by (2)„+1-(3)n+1. If x íU,eflnt|5„

then /n + 1(*) =/„(.*) </„0)=/„ + i(.s) by (3)„ + 1 and (5)„. If x g B, for some

t g Dn+X, then / g Bs by (6)„+1; hence, t g £>„"+1 and * g A,; it follows that, by (e)„

(5)„ and also (b)-(c), if Z)„'+1 # 0, then

/n+i(*) - Ä,(jr) « h,{t) < h(t) + t,

-/.(') + 1</.,Cf)-/«+i(*).

Now consider the case sëfl^,. Then we again get /n + 1(x) < /n + i(j), using

condition (e) if s g D'n+X or condition (e)s if 5 g D"+1.

At this point we are in a position to define the function g that we are looking for.

Let g(x) = lim„/n(jc) for every x g X. By conditions (4)„, n = 0,1,2,..., g is a

well-defined, continuous function satisfying (ii). Also, by (2)„-(3)„, n = 0,1,..., it is

clear that (i) is fulfilled. Let us check (in). To this end it is enough to show that
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g(x) < g(s) for every í g S and x G Bs — {s}. Let s and x be fixed as above.

Suppose s G D„; then fv(s) = fv + x(s) = ■■■ = g(s) by (2)„-(3)„, n = v + \, v +

2,_Moreover, let

t \
L = ln\x G   (J 5,|

so p G L. We distinguish two cases, according as v = max L or otherwise. In the first

case, by (3)„, n = v + \, v + 2,..., and (5)„ we have g(x) = fv(x) < f,(s) = g(s).

In the second case, let m* g L and t g Dm, be fixed in such a way that m* > v and

x G Bt. Then, for every m ^ m*, by (5)m and (2)n-(3)„, n = m* + 1, m* + 2,...,

we get fm(x) < /JO = /„,.(>)• Consequently, by (5)m„ g(x) < /m,(/) < /„.(s) =

g(s). This concludes the proof.   D

Let us point out that Theorem 1 implies that for every a-discrete set S a X, the set

Ms of all functions /g C(X), such that M(f) 3 S, is dense in C(X) when the

latter is endowed with the topology t. In particular, we get the following

Corollary 1. LetJ(be the set of all functions f g C(X) such that M(f) is dense in

X. Then M is a dense subset of C( X) endowed with the topology r.

Proof. This follows from the previous remark and the obvious fact that J( 3 J(s

for every a-discrete dense subset S of X. The existence of such a set S is deduced

from the existence of a a-discrete base for X. A more straightforward proof can be

achieved as follows. For every n = 1, 2,... let Dn be any subset of X which is

maximal with respect to the property: x, y g Dn, x # y => d(x, y) > 1/n; then

S = IC_, A, works.   D

We also have the following proposition which solves negatively Problem 3.2 of [2].

Corollary 2. Let the metric space X be perfect. Then âl( X) is a dense subset of

C(X) endowed with the topology t.

Proof. Since X is perfect, we havc^f c @(X). Then the density of @(X) follows

from Corollary 1.    D

In view of the above corollary, we have that, for a metric space X, the perfectness

of X and the fact that i%( X) # 0 are equivalent.

Finally, we would like to show how Theorem 1 enables us to solve positively

Problem 3.1 of [2]; namely, whether the assumption of the local connectedness of X

can be dropped in Theorem A. As a matter of fact, Theorem 1 allows a further

improvement of Theorem A—namely, obtaining the density of Sñ(X, Y) in C(X, Y)

with respect to t.

Theorem 2. Let X be perfect. Then for every g g C(X, Y) and every e g C(X),

with e > 0 everywhere in X, there exists ge g 0t( X, Y) such that \\g(x) — ge(x)\\ < e(x)

for each x g X. Moreover, ge(X) c conv(g(X)) provided that g is not constant.

Proof. As it is not restrictive, we may assume 0 g g(X) and e < 1 everywhere in

X. Let 2 be any a-discrete dense subset of X, and let S2 denote the set U ye yintg_1(y).

Also, let v g C(X) be defined by v(x) = e(x)/(l + ||g(jc)||), x g X By Theorem 1
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there exists X g C(X) such that (i) X = -1 in X - fi, (ii) -1 < X < -1 + tj every-

where in X, and (iii) M(X) 3 2 n ñ. If g is a constant, i.e, g = 0 everywhere in X,

we take gt = (1 + X)y, with J any fixed element of Y of norm one. If g is not

constant we fix y g conv(/(X)), with 0 < \\y\\ < 1, and define ge as follows:

gt(x) = -X(x)g(x) if x g X - int g-^O), and ge(x) = (1 + A(x)).y if x g

int g'l(0). Then it is easy to check that ge satisfies the thesis of the theorem,   D
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