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FUNCTIONS WITH A DENSE SET
OF PROPER LOCAL MAXIMUM POINTS

ALFONSO VILLANI!

ABSTRACT. Let X be any metric space. The existence of continuous real functions on
X, with a dense set of proper local maximum points, is shown. Indeed, given any
o-discrete set S C X, the set of all f € C(X), which assume a proper local maximum
at each point of S, is a dense subset of C( X). This implies, for a perfect metric space
X, the density in C(X, Y) of “nowhere constant” continuous functions from X to a
normed space Y. In this way, two questions raised in [2] are solved.

The existence of continuous functions f: R — R having some proper local
maximum point within each open subset of R is well known. A nice construction of
such a function is given in [1]. In this note we show that continuous real functions
with this property do exist on any metric space X. Indeed, we prove (Theorem 1)
that for every o-discrete set S C X, the set of continuous real functions on X, which
have a proper local maximum at each point of S, is dense in C(X), endowed with a
certain topology which, in general, is strictly finer than that of uniform convergence;
in particular, functions with a dense set of proper local maximum points are dense in
C(X). As a corollary, if X is a perfect metric space, we get the density in C(X, Y') of
nowhere constant continuous functions from X to a normed space Y. This answers
two questions recently raised in [2] and enables us to improve some results
established there.

Throughout, X is a metric space with metric d, Y is a normed space with norm || |},
and C(X,Y) denotes the set of all continuous functions f: X — Y. When Y = R we
put C(X) = C(X,Y). We denote by 7 the topology on C(X,Y) in which basic
neighbourhoods of f € C( X, Y) are the sets

{ge (X, Y)lg(x) - f(x)| < &(x) for each x € X }

with ¢ € C(X), ¢ > 0 everywhere in X. It is clear that 7 is stronger than the topology
v induced by the metric p of uniform convergence, i.e.,

p(f, g) = min{1,sup{||f(x) - g(x)lllx € X}}.

Moreover, it is easy to realize that 7 and v coincide if and only if X is compact.
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For subsets of X the term discrete is used here in the following sense: a set D C X
is said to be discrete if D has no accumulation points. A g-discrete set is a countable
union of discrete sets. For collections #of subsets of X our terminology is standard:
Fis said to be discrete if every point x € X has a neighbourhood meeting at most
one set in. % . A o-discrete collection is a countable union of discrete collections.

Since the definition of discrete set given here is nonstandard, some comments are
necessary. Obviously a discrete set as defined here is also discrete in the usual sense,
i.e., its relative topology is the discrete topology. The converse is not true (e.g.,
X =R, D= {1/n|n=1,2,...}). Nevertheless, if a set D is discrete in the usual
sense, then it is also o-discrete according to our definition. Indeed, for each p > 0,
the set D, = {x € D|d(x, D — {x}) > p} has no accumulation points; hence D =
U,-oD, =U7_,D, , is o-discrete in our sense. It follows that, in a metric space, the
definition of o-discrete set given here and the usual one are equivalent. This is no
longer true in a general topological space. We do not give any explicit proof of the
last remark. However, a counterexample can easily be constructed by the interested
reader in the space of all real functions on R endowed with the topology of
pointwise convergence.

Given a function f: X — R, we say that x € X is a proper local maximum point
for fif f(U — {x}) C (-0, f(x)) for some neighbourhood U of x. The set of all
proper local maximum points for f is denoted by M( f). Note that for every ¢ > 0,
the set

M/(f)={x€X|0<d(z,x)<t=f(z)<f(x)}

is discrete; hence, the set

M(7) = UM(5) = UM, (f)

>0 n=1

is o-discrete. Conversely, Theorem 1 shows that for any o-discrete set S C X there is
always a continuous function f: X — R such that M(f) D S.

For the reader’s convenience we state a result from [2] that will be used in the
sequel. By Z( X, Y') we denote the set of all f € C(X, Y) which are nowhere constant
(locally nonconstant according to the terminology of [2]), i.e., such that int f ~!(y) =
@ for all y € Y. When Y = R we put Z(X) = Z(X, Y). The convex hull of a set
W C Y is denoted by conv(W).

THEOREM A ([2, THEOREM 2.1)). Suppose X is locally connected and R(X) = 0.
Then, for every function f € C(X,Y) and every positive constant &, there exists a
function g € R( X, Y) such that p(g, f) < & Moreover, g( X) C conv( f( X)) provided
that f is not constant.

To begin, we prove two lemmas.

LEMMA 1. Let D C X be a nonempty discrete set. Then there exists a discrete
collection { B;|s € D} of closed balls with each B, centered at s.
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ProOF. If D is a finite set, then any collection of pairwise disjoint closed balls,
with centers at points of D, is discrete. This is no longer true, in general, if the set D
is infinite. Then we proceed as follows.

For each x € X let d, denote the positive number d(x, D — {x}). Also, fix any
y € (0,3), and denote by B,, s € D, the closed ball centered at s with radius
r,:= vd,. Then { B,|s € D} is a discrete collection. Indeed, we claim that for every
x € X, any ball C, with center at x and radius p, < (3 — y)d, meets at most one
ball B,. This is proved by contradiction as follows. Assume that C, N B, and
C, N B, are nonempty for some x € X, s;, 5, € D, 5, # 55, and let z;, € C, N B, ,
i =1,2. Then d, > max{d,, d, }, for otherwise, assuming for instance d, > d,,
d, > d,, we would get the contradiction

d, <d(sy,s5;) <d(sy,2) +d(z),2,) +d(z3,5,)
Sr+20,+r, <vd, +(1-2y)d, +vd,,
<vd, +(1 —2y)d, +vd, =d,.

The contradiction

d,<d(x,s;) <d(x,z;)+d(z,s)<p, + r,

<-v)d +vd, <(3-v)d, +vd,=d,,2
follows, assuming, for instance, s, # x, and the lemma is proved. O

LEMMA 2. Let @, n € C(X) with 1 > 0 everywhere in X. Also, let D C X be a
nonempty discrete set and H a closed set with D N H = & . Then there exist y € C(X)
and { B,|s € D}, a discrete collection of closed balls with each B, centered at s, such
that

@) U,epB) NH = 2,

i)y = @in X = U, B,

(i) ¢ < ¢ < @ + n everywhere in X, and

(iv) Y(x) < Y(s) foreverys € Dand x € B, — {s}.

PrOOF. By Lemma 1 it is possible to associate a positive number r, with each
s € D in such a way that the collection of balls B,, with center at s € D and radius
r,, is discrete. Also, it is clearly possible, decreasing the numbers 7, if necessary, to
fulfill condition (i). In the same way, owing to the continuity of ¢ and 7, it can be
assumed that, for every s € D, the inequalities

(*) o(x) <@(s) +in(s) < o(x) +n(x)

hold at each point x of B,.
Now define y: X — R as follows:

v(x)=o9(x) ifxeXx- | B,,

seD

y(x) = (1 —r7Yd(x, s))(e(s) + in(s)) + r,%d(x, s)p(x) ifx € B,,s € D.
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Then, by the discreteness of { B(|s € D}, ¢ is well defined and continuous. Also, by
definition, (ii) is satisfied. Finally, having in mind the inequalities (*), it is an easy
matter to check the validity of conditions (iii) and (iv). The lemma is therefore
proved. O

Now we prove our main theorem.

THEOREM 1. Let f, e € C(X) with € > 0 everywhere in X. Also let S C X be a
nonempty o-discrete set and K C X a closed set with S N\ K = &. Then there exists
g € C(X) such that

M glx =Sl

(1) f < g < f + € everywhere in X, and

(iii) M(g) D S.

ProoOF. If S is a discrete set, the existence of such a function g is guaranteed by
Lemma 2. Hence, assume that S is not discrete. Then we have S = U_D,, with D,,
D,,... pairwise disjoint nonempty discrete sets. We set E, = U{_,D,,n =0,1,....

We start by applying Lemma 2 with ¢ =f, n=¢/2, D= D,, and H = K.
Accordingly, there exist f, € C(X) and {B,|s € D,}, a collection of closed balls
with each B, centered at s, such that

(1) { B,Is € D, } is a discrete collection of sets,

@oWU,ep,B)NK = 2,

(3of=foin X —U,cp B,

@ of < fo <f+ €e/2everywherein X,

(5)ofo(x) < fy(s) foreverys € Dyand x € B, — {s}.

Next we show by induction that there exist { f,|n = 1,2,...}, a sequence in C(X),
and { B,|s € UY_,D,}, a collection of closed balls with B, centered at s, such that
the following conditions are satisfied for everyn = 1,2,...:

(1), { B;|s € D,} is a discrete collection of sets,

2, U,epB)N(KUE, )= 2,

(3)nfn = fn—l in X - USED,,B:’

@, foo1 <f, <f,_1+ €e/2""! everywhere in X,

(5), f.(x) <f,(s)foreverys € E and x € B, — {s},

6),s€ D, t€E,_,,B,NB # & implys € B,.

To prove this, let us assume that functions f,,...,f, and balls { B|s € E,} have
been found in such a way that conditions (1),—(5),, k = 0,...,n, and, if n > 0, also
(6),, kK =1,...,n, are satisfied, and construct f,,, and {B|s € D,,,} such that
(1)n+ l_(6)n+l hold.

Decompose D,,, as D,,, =D,;,, VD, with D;,, =D, —U,pB, and
D)y =D,y = Dy,

If D; ., = & weintroduce & by setting h = f,.

If D;,, # @ we apply Lemma 2 again, with ¢ = f,, n = ¢/2"*3, D = D/, ,, and
H = KU (U,cgB,) (His a closed set by assumptions (1), k = 0,...,n). Then there
exist h € C(X) and {B|s € D,,,}, a collection of closed balls with each B,
centered at s, such that

(a) { B;|s € D, ,} is a discrete collection of sets,

(b) (UseDf,HBs) N(KU (UteE,,Bt)) =g,
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©h=f,inX-U,p B,

() f, < h <f,+¢e/2"*3 everywhere in X,

(e) h(x) < h(s)foreverys € D, ,and x € B, — {s}.

Now, consider D,’,,. If D;”.; = @, then the collection { B;|s € D, ,} has already
been defined; moreover, letting f,., = h, it is clear, by (a)-(e) and (5),, that
conditions (1),,, ,—(6),,., are fulfilled.

Hence, suppose that D", # @ and, according to Lemma 1, let {U,|s € D,’,,} be
any discrete collection of open balls, with each U, centered at s. Denote by A, for
eachs € D, ,, the set {t € E,|s € B,}. By (1), k =0,...,n, A, contains at most
n + 1 elements. Let 7, = min{ f,(¢) — f,(s)|t € A,}. By (5),, 7, is a positive number.
Also denote by C, the union of those balls B,, t € E, U D, ,, which do not contain
s.By(1),, k=0,...,n,and (a) (if D, ., # @), C, is a closed set. Then apply Lemma
2 withp=h,n=n,=min{e/2" 37}, D={s}, H=KUC UA U (X - U).
Accordingly, there exist h; € C(X) and B,, a closed ball with center at s, such that

(B),B,cU,B,Nn(KUCUA)= &,

(Y);hy=nh inX - B,

(8),h < h, < h + n,everywherein X,

(e),h(x) < hys)foreveryx € B, — {s}.

Do this for each s € D, ;. Then the collection { B;|s € D, } has been defined.
Moreover, having in mind condition (B),, s € D, the discreteness of {U,|s €
D). .} and also, if D,,, # &, conditions (a)—(b), it is clear that (1),,,,, (2),,,, and
(6),., are fulfilled. Let f, , ;: X — R be defined as follows:

for(x) = h(x) ifxex- U B,

’r
SEDrH-l

fn+l(x)=hs(x) if‘xeBs’sEDr:;l‘

By (1), 15 f+1 is well defined; also, by (1),,..; and (v),, s € D,’, ,, it is a continuous
function. Moreover, using conditions (d),, s € D,’,,, and, as usual, (c)-(d), if
D,., # O, it is easy to check the validity of (3),,,—(4),.,- Let us show that also
(5),,+1 is satisfied. This will conclude the inductive argument. Let s € E, |, x € B,
— {s}. First assume s € E,, 50 f,1(s) = f,(5) by (2),41-(3),,+1- U x €U,cp_ B,
then f,.,,(x) = £,(x) < £,(s) = f,11(s) by (3),,, and (5),. If x € B, for some
te D,,,,thent € B by (6),,; hence,t € D,’,, and s € A,; it follows that, by (¢),,
(6),, and also (b)-(c), if D,,, # 9, then

fora(x) = h(x) <h(t) <h(z) +7,
=fn(t) +7 <fn(s) =fn+1(s)'

Now consider the case s € D, ,. Then we again get f, ,(x) < f,,,(s), using
condition (e) if s € D, , or condition (¢),if s € D,’, ,.

At this point we are in a position to define the function g that we are looking for.
Let g(x) = lim,f,(x) for every x € X. By conditions (4),, n =0,1,2,..., g is a
well-defined, continuous function satisfying (ii). Also, by (2),~(3),, n = 0,1,..., itis
clear that (i) is fulfilled. Let us check (iii). To this end it is enough to show that
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g(x) < g(s) for every s € S and x € B, — {s}. Let s and x be fixed as above.
Suppose s € D,; then f,(s)=f, (s)=--- =g(s) by 2),-3),, n=r+1, v+
2,.... Moreover, let

L= {n|xe U B,}

teD,

so » € L. We distinguish two cases, according as » = max L or otherwise. In the first
case, by 3),,n=v+ 1, v+ 2,..., and (5),, we have g(x) = f,(x) < f,(s) = g(s).
In the second case, let m* € L and t € D, . be fixed in such a way that m* > » and
x € B,. Then, for every m > m*, by (5),, and (2),-(3),, n=m* + 1, m* + 2,...,
we get f,(x) < f,.(t) = f,+(t). Consequently, by (5),,s, 8(x) < f,+(2) < f,(s) =
g(s). This concludes the proof. O

Let us point out that Theorem 1 implies that for every o-discrete set S C X, the set
M ¢ of all functions f € C(X), such that M(f) D S, is dense in C(X) when the
latter is endowed with the topology . In particular, we get the following

COROLLARY 1. Let A be the set of all functions f € C(X) such that M(f) is dense in
X. Then A is a dense subset of C( X)) endowed with the topology 7.

PRrOOF. This follows from the previous remark and the obvious fact that # D
for every o-discrete dense subset S of X. The existence of such a set S is deduced
from the existence of a o-discrete base for X. A more straightforward proof can be
achieved as follows. For every n =1, 2,... let D, be any subset of X which is
maximal with respect to the property: x, y € D,, x # y = d(x, y) > 1/n; then
S =U® D, works. O

We also have the following proposition which solves negatively Problem 3.2 of [2].

COROLLARY 2. Let the metric space X be perfect. Then #(X) is a dense subset of
C( X) endowed with the topology .

PROOF. Since X is perfect, we have # C Z(X). Then the density of Z( X)) follows
from Corollary 1. O

In view of the above corollary, we have that, for a metric space X, the perfectness
of X and the fact that Z(X) # @ are equivalent.

Finally, we would like to show how Theorem 1 enables us to solve positively
Problem 3.1 of [2]; namely, whether the assumption of the local connectedness of X
can be dropped in Theorem A. As a matter of fact, Theorem 1 allows a further
improvement of Theorem A—namely, obtaining the density of Z(X,Y)in C(X,Y)
with respect to 7.

THEOREM 2. Let X be perfect. Then for every g € C(X,Y) and every € € C(X),
with e > 0 everywhere in X, there exists g, € #(X, Y) such that||g(x) — g.(x)|| < &(x)
for each x € X. Moreover, g.(X) C conv(g(X)) provided that g is not constant.

PROOF. As it is not restrictive, we may assume 0 € g( X) and &€ < 1 everywhere in
X. Let = be any o-discrete dense subset of X, and let £ denote the set Uye yintg (y).
Also, let n € C(X) be defined by n(x) = &(x)/( + ||g(x)]]), x € X. By Theorem 1



FUNCTIONS WITH MAXIMUM POINTS 359

there exists A € C(X) such that i) A = -1 in X — @, (ii)) -1 < A < -1 + 5 every-
where in X, and (iii) M(A) O 2 N Q. If g is a constant, i.e, g = 0 everywhere in X,
we take g, = (1 + A)y, with  any fixed element of Y of norm one. If g is not
constant we fix y € conv(f(X)), with 0 <||5|| <1, and define g, as follows:
g.(x) = -A(x)g(x) if x € X —int g7 }(0), and g (x)= (1 + A(x))y if x €
int g7(0). Then it is easy to check that g, satisfies the thesis of the theorem. O
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