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TRANSLATION PROPERTIES OF SETS OF

POSITIVE UPPER DENSITY

VITALY BERGELSON AND BENJAMIN WEISS1

Abstract. Generalizing a result of Raimi we show that there exists a set E c N

such that if A c N is a set with positive upper density, then there exists a number

k e N such that d*((A + k) n E) > 0 and d*((A + k) n Ec) > 0. Some exten-

sions and further results are also obtained.

The purpose of this note is to generalize the following theorem due to Raimi (see

[ID-

Theorem. There exists a set E c N such that, whenever r G N and N = Ui^^T),

there exists 1 < / < r and k G N with

\(D,+ k)DE\= u   and   |(D, + k) n Ec\ = w.iv     ; / I iv     , / I

Raimi's proof used a topological result about N. Another proof was given by

Ryll-Nardzewski [2]. See also [3].

Raimi's theorem is topological in nature and it is natural to ask whether a density

version holds.

The upper density d*( A) of a set A C N is defined by

def
d*(A)= limsup \A n[l,«]|/«,

n—* oo

where [1, n] = (1,... ,n}. If the limit exists and is positive, then we say that A has

positive density d(A) > 0. If N = U1</<r7J), then at least one of the sets D¡ has

positive upper density. Thus the following theorem is clearly a strengthening of

Raimi's result.

Theorem 1. There exists a set E c N such that for any ylcN with 0 < d*(A)

there exists a k G N such that

d*((A + k)r\E)>0   and   d*((A + k) n Ec) > 0.

-
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In fact, the assertion of Theorem 1 holds for every normal set E c N (see

definition below). Theorem 1 is actually a corollary of the following

Theorem Y .If E c N is normal and A c N has positive upper density d*(A) then

(*) d*((A + k) r\E) > 0   and   d*((A + k) n Ec) > 0

holds for all k G Z with at most [-log2 d *(A)] exceptions.

An even stronger result holds, namely

Theorem 2. If E c N is normal, A c N «as u/>/w density d*(A) and e > 0, /«e«

d*((/l + k) C\E)> \d*(A) -e   and   d*((A + k) n Ec) > \d*(A) - e

holds for all k G Z w/i« ai mosí [ä *(A)/4e2] exceptions.

Before presenting the proofs of Theorems 1 and 2, we give the definition and some

basic properties of normal sets.

To any set A c N we attach the (0, l)-sequence an = lA(n) which is its indicator

function.

Definition. Let {a„}x=x be a (0,l)-sequence. Let Bk = bxb2 ■ ■ ■ bk, k > 1, be

any (0, l)-word of length k. Denote by D(Bk, m) the number of occurances of the

block Bk as a sub-block in the block axa2 ■ ■ ■ am, i.e.

D(Bk,m)=\{ne [l,...,m- k + \):an+J_x = b]Tor 1 <j< k ) |,

the sequence {a„}^_i is normal if ]imm_00D(Bk, m)/m = 2~k for all k > 1 and all

**•

A set A c N is normal if 1^(«) is a normal sequence.

It is, perhaps, not obvious that such sets do exist, but actually almost every

(0, l)-sequence is normal (if one views (0, l)-sequences as dyadic expansions of

numbers in [0,1] with usual Lebesgue measure). There are also numerous explicit

constructions of normal sequences (see [4-6]).

For example 1 10 11 100 101 110 • • • is a normal sequence (this sequence is

formed by the sequence 1,2,3,... written in base 2).

If £ is a normal set, then obviously d(E) = d(Ec) = \.

If £ is a normal set, then d(E n (E + k)) = \ for all k G Z\ {0}. To see this,

note that lEn(E+k)(n) = 1 iffn G P- and n - k <e E. Each (0,l)-word ixi2 ■ ■ ■ ik + x

of length k + 1 appears in E with frequency l/^*"1"1 and, in exactly 2k~l of these

words, ix = ik + x = 1. So, the frequency of those « that satisfy « G F and n — k G E

is equal to 2* - 72*+ 1 = \.

In the same fashion one shows that if E is normal set, then

d(E n(E + kx) n(£ + k2) n • • • n(£ + kj) = 2"(m+1)

for any integers 0 < kx < k2 < ■ ■ ■  < km.
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It is not difficult to see that the same holds if we replace some of the sets E + k¡

by Ec' + k,. So we have the following

Lemma 1. Let E be normal set and let

E      i/o = l,Ea= ,

E      if a = -1.

F«e« /or any distinct integers kx, k2,...,km and any (-1, l)-word axa2 ■ ■ ■ am,

¿(n (£*+*,))-2-

Proof of Theorem T. Let kx,...,km be distinct integers for which (*) fails. That

is, for each 1 < /' < m there is an a, G {-1,1} such that d*((A + k,) n E"') = 0.

Shifting both A + k¡ and Ea- k¡ units to the left, we obtain

d*(A n(Ea> - k,)) = 0,       /= l,2,...,m,

and therefore

m \

This, in turn, implies

d*ÏAn (J (£«--£,)   =0.

d*(^) = rf*LnÍN\Ü (£a'-^,)l

= rf*M n f) (£■""' -*,■)

<¿*(ñ (£-a'-^,)) = 2-

1=1

(see Lemma 1), and therefore -log2 d*(A) > m.

Lemma 2. Ler (A", B, X) be a probability space, and let S be a (finite or infinite)

collection of measurable subsets of X, such that, for some 8 ^ 0,\X(E) — \\ ^ 8 for all

E g S and \X(E D F) - \\ < 5 for any two distinct set E, F g S. If A ci X is

measurable and e > \¡28X(A) , then the inequality

\X(A DE)- 2-\(A)\ < e    (or, equivalently \X(A n Ec) - \X(A)\ < e)

holds for E G ê with at most X(A)/2(e2 - 28X(A)) exceptions.

Proof of Lemma 2. First note that if E, F g S, E # F, then

|X(£')- ïl <ô,        \\(EC\FC)- i| <2Ó\

\X(EC n F) - i| < 20,       \X(EC n Fc) - i| < 35,

and therefore

\X(E DF)- X(EC nF)- X(E n F1) + X(EC n Fc)\ < 85.
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Using characteristic functions, we can rewrite the last inequality as

|/ (2 1, - 1)(2 lF - 1) JX| = |/ (1£ - l£l)(lF - lF<) dX

= \f (lElF- lEAF- lElF, + lEAF.) dX

= \J   (IfnF- If1-nF ~~ ^£nr+ * E' n r ) " ^

Define

< 85.

<?+= {£ g fcf: X(/l fi E) > U(^) + e},

S_= [E G <f : \(^ n F) < i\(^) - e}.

Lemma 2 asserts that |c?+U <¡í_| < A(.4)/2(e2 - 28X(A)). We shall actually show

that

max(|fef+|,|ef_|) aX(A)/4(e2- 28X(A)).

We shall carry out the calculations for <S+ only. Suppose £,,... ,E„ are distinct sets in

S+. We denote by 1, the characteristic function of E,, 1 < i < n.

From the definition of e?, we obtain

e<i¿X(^ín£/)-|x(^)

-/(;¿y*-li-)A

Applying the classical Cauchy-Schwarz inequality we can continue:

1/2

/i^x-/ ¿|L(2ii-i)?U^
\l = l

/l^-7ïE  E / (2 1, - 1)(2 ly - l) «/

X(,4)--U¿/(2 1I.-l)2¿X + 2     E     /(2 1,.-l)(2 1,.-l)rfX
\ i = 1 1 < < </ < n

,2 —

1/2

Observing that (2 1, - 1)   = 1 and using inequality (1) we can continue:

J_
4«2

X(/l)-—(« + «(«-1)85)
1/2

1-7^+21
4«

1/2
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It follows that e2 < X(A)(l/4n + 25), and therefore after elementary calculations

we obtain« < A(^)/4(e2 - 28X(A)).

The proof of the inequality for S_ is essentially the same.

Proof of Theorem 2. Suppose E c N is a normal set and let A c N and e > 0 be

given.

For a set B c N we shall write d„(B) = \\B n [1, «]|, so that d*(B) =

lim sup„^ x dn( £).Define

Jf= [k g Z: rf*((yl +Jc)n£)< i</*(i4) - e}

= [k^Z:d*(A D(E- k))< {-d*(A)-e},

XT' = {fc G Z: </*((>< + jfc) n £') < |¿*U) - e}

= {k g Z: rf*(¿ n(£c - jfc)) ̂ |rf*Ù) - e).

We shall prove Theorem 2 by showing that max(|Jf |, \Jf'\) < i/*(^)/4e2. Sup-

pose that |Jf| > (7*(/4)/4e2. Let kx, k2,...,k„ be distinct numbers in Jf, « >

d*(A)/4e2. Choose a positive number 5, such that « > d*(A)/4(e2 — 28d*(A))

and let {m,}°L, be an increasing sequence of positive integers such that d*(A) =

\im¡^xdm (A). Choose a number iQ such that for all /'3* /'0 the following in-

equalitites hold:

\dm(Nn(E-kB))-2-\<8   for all 1 </> < «,
(2) '    ,V        V ■■--  "■'       '

|dm¡(N n(£- fcp) n(£- it,)) -i|<a    for all 1 </> < ^< «,

«>í/„1(/t)/4(e2-25-í/m(/í)).

(The existence of a number j0 is an immediate consequence of the normality of £.)

For i > /'0 and 1 < p < « put Ä = A C\ [1, mj; Ep = (E - kp) n [1, mj. Note

that i/m is a probability measure on the set of all subsets of [1, m,].

Inequalities (2) can be rewritten as

\dm(E>p)-\\<8     (i </><«),

\dm(E,pCElq)-\\<8        (l^p<q^n),

n>dm(Ai)/4(e2-28-dm(Ai)).

By the proof of Lemma 2 there is at least one index p„ 1 ^ p¡ =$ «, such that

(3) dm/(^'n £;J > idM/U) - e,

Since/j, g [1, «] for all / ^ /0, there is an infinite set 7 of indices and a number p

such that />, = p for all / g 7.

Passing to the upper limit as i -> oo, / g 7, we obtain from (3) d*(A n E — p)

> \d*(A) - e for some /> g Jf which contradicts the definition of Jf. This shows

that |Jf | < d*(A)/4e2. The proof that |Jf'| < d*(A)/4e2 is essentially the same

and is left to the reader.

It is natural to ask whether or not the results obtained here can be generalized to

other groups. As a matter of fact even the group structure is irrelevant, and one can
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establish the following result: Let 0 denote some countably infinite family of

one-to-one mappings <p: N -* N (not necessarily onto), that acts freely on N, i.e. for

m # <p' and all « g N, cp(«) # m'(>0- Then there exists a set E such that for all sets A

with positive upper density, both d*(A n <p-1(7i)) > 0 and d*(A n qf>_1(£c)) > 0

hold for <p g $ with at most [-log2 J*(^4)] exceptions. The proof goes along the

lines of the proof of Theorem T, to be sure the notion of normality of £ is defined

now with respect to $. Because of the independence of the underlying random

variables, the fact that 0 has no structure presents no obstacle and one easily

establishes the existence of O-normal sets £ that satisfy the property:

For every finite set $0 c $, and every choice of a(<p) g {-1,1}, m G O0, we have

lim   -¡{¿<n:<p(i)G fW^e <D0}| = 2^|î>»1

where as usual El = E and £_1 = Ec.

Then for £ one can take any $ normal set. The details are straightforward and

can safely be left to the reader.
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