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SHORT NORMAL PATHS AND SPECTRAL VARIATION1

RAJENDRA BHATIA AND JOHN A. R. HOLBROOK

Abstract. We introduce the notion of a "short normal path" between matrices S

and T, that is, a continuous path from S to T consisting of normal matrices and

having the same length as the straight line path from S to T. By this means we prove

that for certain normal matrices S and T the eigenvalues of S and T may be paired

in such a way that the maximum distance (in the complex plane) between the pairs is

no more than the operator norm ||S - T\\. In particular, we generalize and provide a

new approach to a recent result of Bhatia and Davis treating the case of unitary 5

and T.

1. Introduction. The basic aim of this work is to see how far the "normal path

method" introduced in Bhatia [1] can advance our understanding of the spectral

variation of normal matrices.

Let N denote the set of normal matrices of a certain fixed size «; if we wish to

emphasize that we are speaking only of «-by-« matrices, we will write N(«). Thus

N(«) = all complex «-by-« matrices N such that N*N = NN*, where M* denotes

the adjoint (conjugate transpose) of M. The norm of M as an operator on the Hubert

space C" is denoted here by \\M\\. We shall use several times the unitary invariance

of this norm, that is, the relation ||i/MF|| = ||M|| for unitary U and V. We shall also

routinely allow ourselves the convenience of speaking in terms of the operator

corresponding to M, rather than the matrix M itself, and of changing bases where

appropriate.

Consider two elements S and T of N(«); let X(l),... ,X(n) list the eigenvalues of S

(repeating eigenvalues according to their multiplicities) and let ju(l),.. -,p(n) do the

same for T. Since there is no canonical way to pair the eigenvalues of S with those of

T, it is appropriate to define the " spectral distance" from S to T by

d(EigS,EigT) = mini max \\(k) - p(n(k))\),

where tr ranges over all permutations of (1,2,... ,n). The following problem (raised

explicitly in L. Mirsky [4]) has a considerable history: do we have

(1) ¿(EigS,Eigr)<||<>-7l|
for all S, Tin N?
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The answer is "yes" in several interesting cases: H. Weyl noted this for the case of

hermitian S and T in the course of [6]; V. S. Sunder showed in [5] that (1) holds

whenever S is hermitian and T is skew-hermitian; recently Bhatia and Ch. Davis [2]

have established (1) for unitary S and T. In each of these cases the argument

involves finding a good matching of the eigenvalues of S and T, i.e., finding a good

permutation m in the sense of our definition of ¿/(Eig S, Eig T).

In Bhatia [1] we find a different approach. There the matching is only implicit and

the essential observation is that

(2) <7(Eig S, Eig T) < length of any normal path joining S and T.

In §2 we give a different proof of (2) that removes certain technical restrictions on

the method of [1]. This inequality clearly means, as noted in [1], that (1) holds for

any S and T such that the line segment joining them consists entirely of normal

matrices; Weyl's result is, of course, included in this case. It will be useful to note

that, assuming 5 and T are normal, the line segment joining S and T lies in N

exactly when 5 — T is normal.

The message of the present paper is that there are significant cases where S and T

can be joined by a path in N that is "short", that is, of length \\S - T\\, even though

the "obvious" path of that length, namely the line segment from S to T, does not lie

in N. By a " plain" in N we shall mean a subset F of N such that any pair S, T in F

may be joined by a short normal path lying in F. Within plains, clearly, (2) ensures

that spectral variation is limited by (1). In §3 we show that CU, the set of scalar

multiples of unitary matrices, is a plain. The corresponding application of (2)

generalizes the result of Bhatia and Davis. It turns out that N(2) is also a plain.

Nevertheless, our method does not always yield the best results on spectral variation.

We are indebted to M.-D. Choi for an example of 3 X 3 normal matrices T and S

that are not joined by any short normal path. Moreover, in Choi's example one can

take S to be hermitian and T skew-hermitian, so that Sunder's theorem applies.

2. Normal paths and spectral variation. By a normal path (or curve) we mean a

continuous function y: [a, b] -* N, defined on some real interval [a, b]. By the

length of y, \y\, we mean the arclength with respect to the operator norm, that is,

M=sup{XllY(/* + i)-Y(/J||:a = ,0<>i < ...  <tm = b}.

In cases of interest to us, this length will be finite (the path will be " rectifiable"). We

say such a path joins matrices 5 and F when y(a) = S and y(b) = T.

In [1, see Theorem 3.3] Bhatia showed that (subject to certain technical restric-

tions), ¿(Eig S, Eig T) < |y| for any normal path joining S and T. This is the result

that we mean to exploit in a new way in §3. First, however, we present a different

and simpler proof of this inequality, which also removes the technical restrictions

that seemed necessary in [1]. While the results of this section will be sufficient for

our present purposes, the method of [1] (based on a moving decomposition of the

tangent vector to the normal curve) entails other possibilities that should not be

ignored. In particular, it applies, not just to the operator norm, but to a whole class

of unitarily invariant matrix norms.
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It is clear that the spectral distance ¿(Eig S, Eig T) defines a pseudometric on N,

and standard results on spectral continuity (see, for example, T. Kato [3, Chapter 2,

§5.1]) imply that

(3) ¿(Eig Tk, Eig T) -» 0    whenever \\Tk - T\\ -» 0.

The only other ingredient we need is the following quantitative proposition on

spectral variation around normal matrices. This proposition is well known, but since

it plays a special role in our discussion we include the simple proof.

Proposition 2.1. Let N be normal and let A be any matrix. For each eigenvalue p. of

A there is some eigenvalue X of N such that \p — À| < \\A — N\\.

Proof. Let « be a unit eigenvector of A corresponding to p, and let ux,...,un be

an orthonormal basis of eigenvectors of N with corresponding eigenvalues Xx,...,Xn.

Then

\\A - N\\2 >\\(A - N)u\\2 =\\pu - £XA(«, uk)uk(

= |E(m- x*)(w, «*)«*! = Y.\v- X/t1 |(*,«t)1 •

Since E|(«, uk)\2 = I, it is clear that for some X (= Xk) we have \p - X\ < \\A - N\\.

Q.E.D.

Theorem 2.2. Let y be a (rectifiable) normal path joining the (normal) matrices S

and T. Then ¿(Eig S, Eig T) < |y|.

Proof. For convenience let us suppose that y is parametrized on [0,1], and let us

denote by yr that part of the curve which is parametrized on [0, /•]. Let G be the set

{/■ g [0,1]: ¿(Eig S, Eig y(/-)) < |Yr|}; we wish to show that 1 g G.

Note first that, by the continuity of y and of arclength, and by (3), G is closed. In

particular R G G, where R = supG. We claim that R = 1, for otherwise consider

N = y(R), and let d be the minimum distance between distinct eigenvalues of N.

Using again the continuity of y and (3), we can find r' g (R,l] such that A =

y(r') satisfies ¿(Eig A, Eig A) < d/2. The matching of eigenvalues achieving

¿(Eig A, Eig A) must then be such that each eigenvalue of A is paired with the

closest eigenvalue of N. By Proposition 2.1 we conclude that ¿(Eig A, Eig A) <

\\N - A\\. But then

¿(Eig5,EigY(r'))^¿(Eig5,EigA)+¿(Eig7v',Eig^)<|YR| + ||A-^||,

and since this last sum is certainly no greater than |yr-| we have r' g G, a

contradiction.    Q.E.D.

3. Construction of short normal paths.

Theorem 3.1. The set CU, consisting of all scalar multiples of unitary matrices, is a

plain (that is, every two elements can be joined by a short (normal) path lying in the

set).

Proof. Any two elements A0 and Nx of CU may be written in the form N0 = r0U0,

A, = rxUx, where the rk are nonnegative reals and the Uk are unitary. Let K be a
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skew-hermitian operator such that the unitary Ux(U0)~l may be written as expK,

and such that the eigenvalues of K lie in the interval {—iff, i-n\.

With respect to an appropriate orthonormal basis of C", K corresponds to

diag(/0,,.. .,i0„), where

(4) 14,1 < ••• < 1^1 <«■.
Since reduction to this form can be achieved by a unitary conjugation, and since

norms and distances are all invariant under such conjugations, we can work with

matrix representations of all operators with respect to this basis without changing

any quantity of interest to us. In particular, we have

IK - Nx\\ = fffa - rxUx(c/q)"1 I - \\r0 - r, exp K\\,

the norm of a diagonal matrix with eigenvalues r0 — rxexp(idk). Since we have (4)

and r0, rx are nonnegative, it follows that

(5) \\N0-Nx\\ = \r0-rxexp(i6x)\.

Parametrize the straight line from r0 to rxexp(i6x) in the form r(t)exp(itdx),

0 < / < 1. The right side of (5) is the length of this line, so that we also have

(6) ||A0 - AJ = C \r'(t)exp(itOx) + r(t)iOxexp(itÔx)\dt
'O

= f\r'(t) + r(t)i6x\dt.

Now define the operator-valued path A(i) = r(t)exp(tK)U0, 0 < r < 1. Evidently

N(t) traces out a smooth curve in CU, and it is easy to see that A(0) = A0 and

A(l) = Nx.

We claim that this curve is a short (normal) path. Indeed, its length L is given by

L= P \\N'(t)\\dt

= Ç \\r'(t)exp(tK)U0 + r(t)Kexp(tK)U0\\dt,

and since the norm is unitarily invariant we also have

r\ „

£ = /o   \\r'(t) + r(t)K\\dt.

Now the operator r'(t) + r(t)K corresponds to a diagonal matrix with eigenvalues

r'(t) + r(t)i8k, so that its norm is the maximum modulus of these expressions. In

view of (4) and the fact that r'(t) and r(t) are real, we have

(7) L = f1\r'(t) + r(t)iex\dt.

Equations (6) and (7) show that our path is indeed short.    Q.E.D.

Theorem 3.2. Let S and T be normal operators with spectra lying on circles C(S)

and C(T) respectively. If these circles are concentric then

¿(Eig 5, Eig F)< ||S- r||.
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Proof. If a is the common centre of the circles C(S) and C(T), then S and T lie

in a + CU, clearly a (normal) plain by the last theorem. Our inequality follows from

Theorem 2.2.    Q.E.D.

In particular, we obtain the following spectral variation result of Bhatia and Davis

[2] by a method quite different from theirs.

Corollary 3.3. If U and V are unitary, ¿(Eig U, Eig V) < ||Í7 - V\\.

It is a curious fact that N(2) is itself a plain. The example of Choi, mentioned in

the introduction, dashes one's hope that N(«) might be a plain for some « > 2.

Theorem 3.4. N(2) is a plain.

Proof. Let S and T be elements of N(2). Since the spectra contain at most two

points each, an elementary geometric construction shows that, except perhaps in the

case where the spectra lie on parallel lines, there are concentric circles containing

them. If a is the common centre, we have S and T contained in a + CU, which is a

plain by Theorem 3.1, so that there is a short normal path joining S and T.

In the exceptional cases we may assume, by introducing an appropriate scalar

multiplication, that the spectra of S and T lie on lines parallel to the real axis. Then

the skew-hermitian part of S — T is a scalar, so that S — T is normal. As noted

earlier, this ensures that the straight line from S to F lies in N.    Q.E.D.

Theorem 3.4 implies, of course, that (1) holds for all 2-dimensional operators. This

fact in itself has long been known and may be established by various more direct

arguments. For example, Proposition 2.1 may be applied symmetrically, that is, with

A = S, A = T, and with A = T, A = S. When only two-point spectra are involved,

this is enough to conclude that (1) holds.

It may have occurred to the reader that there is another natural way to deal with

the exceptional cases in our proof of Theorem 3.4. One could consider perturbations

of S or F that place the spectra on nonparallel lines and look for some sort of limit

of the corresponding short normal paths as the perturbation is reduced to zero. More

generally, one may ask whether the infimum of the lengths of normal paths joining a

pair S and Fis attained. This question is answered by the next proposition.

Proposition 3.5. If F is a closed set of matrices and

L = inf { |y| : y is a path in F joining S and T},

then L is achieved, that is, there is a path of length L joining S and T in F.

Proof. Let yk be a path from S to F lying in F and having length Lk, where

Lk -* L as k —> oo.

We may reparametrize the paths with respect to arclength and by a change of

scale we may assume that, for each k,

yk: [0,1] -^ F   withy,(0) = Sandy,(l) = F,

and that, for each subinterval 7 of [0,1], yk ,, the part of yk parametrized on 7, has

length \l\Lik.
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After these modifications the functions yk are equicontinuous on [0,1]; in fact,

Ilï*(a)-Y*(*)|| <hr*.t*.'*ll = \b~ a\Lk-

A standard argument of Arzela-Ascoli type implies that there is a subsequence of the

yk converging uniformly to a path y. Clearly this path will join S and F, lie in F, and

have length L.    Q.E.D.
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