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INNER DERIVATIONS OF DIVISION RINGS AND CANONICAL

JORDAN FORM OF TRIANGULAR OPERATORS

iDRAGOMIR t.  DOKOVIÓ1

Abstract. Let D be a division ring and k its center. We show that a generalized

canonical Jordan form exists for triangularizable matrices A over D which are

algebraic over k, i.e, satisfy/(/I) = 0 for some nonzero polynomial / over k. This

canonical form is a direct sum of generalized Jordan blocks Jm(a,ß). This block is

an m by m matrix whose diagonal entries are equal to a, those on the first

superdiagonal are equal to ß, and all other entries are equal to zero. If a is separable

over k then we can choose ß = 1, but in general this cannot be done.

Notation. D denotes a division ring, and k its center. By À we denote a fixed

element of D, and by A: the centralizer of X in 7). We set Z)* = D\{0},K* = A\{0}

and U = {Xa — aX: a£ß}. The right D-vector space whose elements are column

«-vectors over D is denoted by D" and its standard basis is denoted as usual by

{ex, e2,... ,e„). By R = D[t] we denote the ordinary polynomial ring over D in the

indeterminate t. If /g k[t] then (/) will denote the ideal of k[t] generated by /

while fR (= Rf) will denote the ideal of R generated by/. Following [7] and [3] we

shall say that an 7?-module is bounded if its annihilator (also called its bound) is not

the zero ideal.

For a, ß g D we denote by D"(a, ß) the vector space D" considered as a right

7c-module in which t acts as a TMinear transformation such that ext = exa, and

e¡t = e¡a + e¡_xfi for 1 < z < w. Clearly, if ß # 0 this module is cyclic with genera-

tor e„. The 1-dimensional module D1(a, ß) is independent of ß and will be denoted

by D(a). The module D"(a, ß) has length « and each factor of its Jordan-Holder

series is isomorphic to D(a).

Mn(D) is the /c-algebra of « by « matrices over D. X - Y for X, Y G Mn(D)

means that X is similar to Y.

Let Jm(a, ß) g Mm(D) denote the generalized Jordan block with diagonal entries

equal to a and those on the first superdiagonal equal to ß, while all other entries are

zeros. We shall write Jm(a) for the usual Jordan block Jm(a, 1).

For a G D we define [a] to be the set {ßay: ß, y g K}. Note that, in general, [a]

is not closed under addition.
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Results and proofs. For a general treatment of the similarity problem of matrices

over a division ring we refer the reader to standard references [3, 7] and to Cohn's

paper [4], We shall concentrate only on the case of triangularizable matrices. It is

rather surprising that even this case is nontrivial. We are mainly interested in the

situation when the eigenvalues are algebraic over k but for a few preliminary results

we do not need that hypothesis.

Lemma 1. If a S D\ U, A »■ (<, £), x ç D2 and Ax = xX then x g exK.

Proof. Writing x = exß + e2y, the equation Ax = xX implies that Xß + ay = ßX

and Xy = yX. Thus y G K. If y # 0 then

a = (ßX - Xß)y~' = (ßy~l)X - X(ßy~x) g U,

which is a contradiction. Hence y = 0 and consequently, Xß = ßX, i.e., ß g K. We

havex = exß g exK.   ■

Lemma 2. For a g D we have ([) x)3t(\) x) if and only if a g U.

Proof. Denote the first of these matrices by A and the second by B. If a g U, say

a = ßX- Xß, then

d îhï s)•(; f)-(ô *)•
If ai £/ then by Lemma 1, /íx = .xX => x g e,7C Since Tie, = e,X for i = 1,2 it

follows that A and 7? are not similar.    ■

Propositions. Fora, ß g D we have (l ")~(ä £) if andonly if U + [a] =U+[ß].

Proof. Denote the first of these matrices by A and the second by B. Assume first

that A ~ B. If one of the elements a, ß belongs to U, then Lemma 2 implies that the

other one also belongs to U and so U + [a] = U = U + [/}]. Thus we may assume

that a and ß are not in U. By hypothesis there exists S g GL2(7)) such that

SA = BS. Lemma 1 implies that Sel = exy for some y g AT*. Thus S = (J¡ ®) and

the equation 5/1 = BS gives yX = Ay, ya + 8X = X8 + /?e and eX = Xe. Thus y,

£ g K* and ¿8 = yae1 + (ÓV'jA - A^e"1). Hence U + [ß] c {/ + [a]. The op-

posite inclusion follows by symmetry.

Now assume that U + [a] = U + [/?]. If one of the elements a, ß is in U so is the

other and Lemma 2 implies that A — B. Thus we may assume that a and ß are not

in U. By hypothesis we can write

^ = yae"1 + (fie'^X - X(8e'1),

where y.teíí* and 8 g D. Then

(Y 8\tX a\IX ß\ly 8\

\0 e) \0 X) \0 X/ \0 e/

Let V be a bounded indecomposable right 7v-module. The bound of V has the

form f'R where / is an irreducible polynomial in k[t]. Moreover, V is determined

uniquely, up to isomorphism, by its bound. We shall now describe such indecom-

posable modules V in the case when / has a root in D. Then / factorizes in R into a

product of linear polynomials (see [6, Corollary 4.7, p. 366]).
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Theorem 4. Let X be algebraic over k with minimal polynomial f. The module

V = D"(X, p), « ^ 2, is decomposable if and only if p g U. If V is indecomposable

then its bound is f"R.

Proof. Assume that p g U, i.e., p = Xa — aX for some a g D. Then

(e2 — exa) • t = e2t — exta = e2X + exp — exXa = (e2 — exa)X.

Thus exD and (e2 — exa)D are 1-dimensional submodules of V. Since X is algebraic

over k, Fis bounded. By [7, Theorem 24, p. 46] Vis decomposable.

Now assume that p £ U. Observe that fR is the bound of D(X). Hence f'R

annihilates V. In order to prove that V is indecomposable it suffices to show that

f'R is in fact the bound of F (see [7, Theorem 21, p. 45]). The linear transformation

of V defined by x -* xt has the generalized Jordan block A = Jn(X, p) as its matrix

with respect to the standard basis of V. The matrixf(A) = (a,y) satisfies át¡ = 0 for

z > j and a, , + 1 = ß is independent of z and «. By Lemma 2 we know that D2(X, p)

is indecomposable and consequently ß # 0. ït follows that/(/I)"1 # 0, i.e., /"_1

does not annihilate V.   ■

We shall need the following property of the inner derivation x ^ Xx — xX of D.

Lemma 5. 7/X is algebraic over k then the equation Xx — xX = I has a solution in D

if and only ifX is not separable over k.

Proof. Let / be the minimal polynomial of X over k. Next observe that X is not

separable over k if and only if (t — X)2 divides/. Hence the assertion of the lemma

is a consequence of a more general Lemma 8.4.3 of Cohn [5, p. 220].    ■

Remark 1. In the case char k = 0 the assertion of the lemma also follows from the

fact that the Weyl algebra Ax over k is simple.

Remark 2. If X is algebraic over k and not separable over k then the equation

yX = X(y + 1) also has a solution in D. Indeed, if x satisfies Xx — xX = I then we

can take j> = -xX. A special case of this result is useful in the study of cyclic division

algebras (see [8, Example 3, pp. 287-288]).

Now let F be a finite-dimensional right vector space over D. We shall say that a

linear transformation u: V -» F is triangular if there exists a basis of V with respect

to which the matrix of u is upper triangular. We shall say that iz is algebraic over k if

f(u) = 0 for some nonzero polynomial/ g k[t]. The next proposition shows that the

algebraic triangular operators can be characterized in terms of their minimal

polynomials over k.

Proposition 6. Let u g EndD(F) be algebraic over k with minimal polynomial

/ G k[t], and let dim V = « < oo. Then u is triangular if and only if every irreducible

factor of fin k[t] has a root in D.

Proof. Necessity. Let A be an upper triangular matrix representing u with respect

to some basis. Since u is algebraic over k, all the diagonal entries of A are also

algebraic over k. Let g be the product of the minimal polynomials over k of all its

diagonal entries. Then g(A)" = 0. Hence / divides g" and the necessity of our

condition is proved.
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Sufficiency. We shall view F as a right 7c-module in which t acts as u. Our

hypothesis implies that / is a product of linear polynomials in 7? (see [6, Corollary

4.7, p. 366]). It follows that every elementary divisor g of u also has the same

property. This clearly implies that all the factors of a Jordan-Holder series of R/gR

are 1-dimensional. Since V is isomorphic to the direct sum of R/gR taken over all

elementary divisors of V, every factor of a Jordan-Holder series of V is also

1-dimensional. Hence u is triangular.   ■

We can now easily prove the Jordan canonical form theorem for triangular

operators.

Theorem 7. Let u be an algebraic triangular linear operator of an n-dimensional

right D-vector space V. Then there exists a basis of V with respect to which the matrix

of u is a direct sum of generalized J ordan blocks Jm(a, ß) with ß G U(a) = {ax — xa:

x g D}. Moreover, this normal form is unique, as in the commutative case, except that

the eigenvalues a are determined only up to conjugacy and ß may be chosen arbitrarily

subject only to the condition ß £ LJ(a). If a is separable over k we may choose ß = I.

Proof. All assertions except the last follow from [7, Theorem 29, p. 48], and

Theorem 4 above. The last assertion follows from Lemma 5.    ■

We conclude with the following result.

Proposition 8. Let X g D\k be algebraic over k, U = {Xß - ßX: ß g D) and

a G D\U. Then D = U © Ka = U © aK.

Proof. By a result of Artin and Whaples [2, Theorem 13] (see also [1, Theorem 3])

the left and right dimensions of D over K are finite and equal to the degree of X over

k. Now both assertions follow from the fact that the inner derivation of D given by

x ~» Xx — xX is TC-linear for both left and right 7i"-vector space structures on D, and

its kernel K has dimension 1.    ■
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