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A ZETA-FUNCTION ASSOCIATED

WITH ZERO TERNARY FORMS1

MINKING EIE

Abstract. Consider the zeta-function associated with zero ternary forms defined as

1
Ko = E (Rez> 2),

v    detjc

where x runs over all SL,(Z)-inequivalent zero ternary forms. We shall approximate

|(i) by another zeta-function which we can compute explicitly. By the approxima-

tion, we see that |(2) is very close to 2f(2)f(2) which gives the contribution of zero

ternary forms to the dimension formula of Siegel's cusp forms of degree three

(computing via Selberg Trace Formula) up to a constant multiple.

1. Introduction. For each pair of nonzero integers sX3 and s2, we define A(s13, s2)

to be the set of ternary forms

0       0      sv.

S13      s23       *3

Let

V
luv

0 1 u
0    0     1

|«, v, w integers).

a2 operates on A(s13, s2) by the action 5 -»' USU. Let n(sXJ, s2) be the number of

inequivalent representatives of A(j13, s2) under the operation of 3P. Consider the

zeta function |(i) defined as

(i) é(0- £   I t£mt^-
S2^0su = l     (S2S23)

We shall prove

Theorem A. For Ret ^ 2, we have

5   |   3f 2-2'+1 + 2-3'-2-5' + 2^U(2)       €(0 1 - 2"3r

where f(/) is the Riemann zeta-function.

?(30
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2. The special case / = 2.

Lemma 1. Let 8(sn, s2) be the subset ofA(sx3, s2), defined by

0 < s23 < (sX3, s2) = g.c.d. ofsn ands2,

0 <53 < l(s23),

where l(s23) is the least positive integer in the set

2k
S-nS23J13

(sn>sl)
+ k'

S,-íS13J2

(sl^sl)'

+ 2nsx3\k, n g Z ).

Then we have

(1) for each S g A(í13, s2), there exists U G 0>such that 'USU g 8(sX3, s2); and

(2) ifSx, S2 g 8(sX3, s2), U g 0>andSx ='US2U, then Sx = S2.

Proof. For

U =
1 m n

0 1 p

0     0     1

and    S

in 0>and A(s13, s2), respectively, we let

'USU =

0

0

-^ 13

0

0
s 11

'23

'23

'23

'23

Then a simple calculation shows

s'23 = s23 + msx3 + ps2,

s3 = s3 + 2ps23 + p s2 + 2nsX3.

First we choose integers m, p so that 0 < s23 < (sw s2)- Note that the integral

solutions of the equation msx3 + ps2 = 0 are given by

P =
ksX3 -ks-,

m =
(sn,s2)' (sX3,s2)'

Substituting the value of p as above into s3, we get

si = s3 + 2k ■    $23v13    + k2 ■

Un-^) (sl3,s2)

k an integer.

i,V13°2
+ 2ns13.

When k and n range over all integers, the set G is a principal ideal of Z. Hence we

can choose s' as asserted. (2) is obvious.

Remark 1. The set k2 ■ sX3s2/(sx3, s2)2 is a multiple of sX3. If we let sx3 =

i13/(j13, s2) and s2 = s2/(sX3, s2), then we have

' 2( i23^13 > SU )       if ^2 's even anc^ s23 ^ 0,

l{s2i) = { (2^23^3, sX3)    if i2is odd and s23 # 0,

,2\s 131 if i„ = 0.
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Remark 2. The set 8(sx3, s2) in Lemma 1 is a subset of M(sx3, s2) which consists

of matrices in A(s13, s2) with 0 < s23 < (sx3, s2) and 0 < s3 < 2sl3. However,

8(sX3, s2) # M(s13, s2) in general as shown by the following example:

-1

1
0

1
1 JL3

0
3
2

1     -1
0     1
0     0

0    0
0    3

L3    2

3
2
2J

From this lemma, it is easy to see that jtt(.s13, s2) = p(sX3, -s2) = p(-s13, s2) =

p(-sx3,-s2). Hence it suffices to consider the case when sX3 and s2 are positive

integers. Here are some particular values of p(sX3, s2) for i13 = 1,2,3,4,5.

2    if s2 is even,

1     ifs2isodd;
p(l,s2) =

p(2,s2) =
if s

p(3,s2) =

p(4, s2) =

p(5,s2)

, = 4« + 1, 4/i + 3,

if s2 = 4n + 2, 4«;

if ^2 = 6/1 + 1, 6« + 5,

if s2 = 6/1 + 2, 6/1 + 4,

if: 6/1 + 3,

if s2 = 6/1 ;

if s2is odd,

if. 8/1 + 2, 8/1 + 6,

otherwise;

if s2 = 10/1 + 1, lO/i + 3, lO/i + 7,10« + 9,

if s2 = lO/i + 2, 10« + 4, 10/1 + 6,10/1 + 8,

ifs2 = 10/1 + 5,

ifi2 = 10/1.

For each fixed positive integer s13, we define

(3) v(su) =   zZ
j,*0

p(sX3,s2)        1

W13J2 2f(2)

Lemma 2. For a/ij positive integer k, we have

(4) U(2*) = + il
24*       24A: + 2

Proof. Since the values of p(sX3, s2) are computed via Lemma 1 as

p(2k,s2) =

it follows that

2k + 1 + m-2k    if(s2,2k + 1) = 2m,0< m < Â:,

2* + 1 + /<-2*

1(2*) =   I

if(52,2* + 1) = 2* + 1,

p(2*,52)      1

î2-i

2* + i

r(2)

)4Ar + 2
ii
26k
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Lemma 3. If p is an odd prime and m is a positive integer, then

(5)
V(pm) = ^

Pm    ,   <e(pm)

«4m _4m + 2

<K/>m)
,6m

where <b(pm) = pm   l(p — I) is the Euler ^»-function.

Proof. Let 1 < n < w and (s2,2pm) = 2p". If l(s23) is the integer defined in

Lemma 1 for such s2, then we have 1(0) = 2pm and l(kpu) = 2pm-" + u if (A:, p) = 1

and m is a nonnegative integer. (The total numbers of such k's is <?(/?"").) Hence

we get

p{p-,s2) = 2[p'" + n<p(pm)].

For the case (s2,2pm) = p", we get p(pm, s2) = pm + n<j>(pm) in the same

manner. Hence our lemma follows from the definition of r](pm).

Theorem B.

65    £(2K(3)g(5)

*W     24'        f(6)        '

Proof. By the definition of r/ and Lemma 1, we have

a<b(d)
7](a) = a£

d\a
4j3

flV

where a = 2 if a is even and a = f if a is odd. Consequently, if m and /i are

relatively prime integers, then a direct calculation shows i)(mn) = f r/(//i)r/(/i).

Let Tj(iz) = \i\(a). Then by the previous lemmas, we have the following properties

for t)(w):

~_2*_    2*-1 2*-r

24*       24*+2

(2) "4 4

(1) *(2*)-|

♦G>)

26k

HP")
,6*

if/i is an odd prime,

(3) 7](mn) = 7](m)r](n) if m and « are relative prime integers.

Hence

00

Liw= n (i+ î)(p) + îj(p2)+••■ + îj(p") +
m = l P : prime

(I-P-6)

For odd prime/?, we have

00

fc-1 (1 - p  )(1 -p  )

For the special case p = 2, we have

1+   Vr,(2M-13 (! - 2'6)
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Hence
00 r CO

f(2)-2f(2).  En(-m)-|f(2) E iW
m = l m = 1

= %2) n _(1"p"6)_

= 65    f(2)f(3)f(5)

24 f(6)        '

3. The general case. For each fixed positive integer s13, we define

(6) VÁsu)

Then we have

(1) *,(!)- i

2f(2/)

■>    MJ13' ^2)

'0    (i,43i2)'
V    13   2. I

Reí > 1.

(2)

(3)

-2l^ + ^^ +
>*-l

22*í      2<2/t + 2"

5/ /  , »(/>*) ,
4 I   n2kt n(2k + 2)l

+

+

2¡kt

4>{pk)

P        P"      ' P

ifp is an odd prime,

(4) 7]t(mn) = jT),(w)t}((/i) if m and n are relative prime integers.

From the computation we carried out before, we get

Theorem A. For Ret > 2, we have

«(■0
5       3     2~2,+ 1 + 2'3'- 2~5t+2

2 + 2 ' 1-2-3'

f(fK(2f-lK(3i-l)

f(3"0
4. Application and remark. Let S be a 3 X 3 integral symmetric matrix of rank 3.

We call S a zero ternary form if S represents zero in rational integers; i.e. there exists

a nonzero integral vector u = [ux, u2, u3] such that uSu' = 0. Hence there exists a

unimodular integral matrix U such that [3]

USU'

0

'23

'13       J23

Set

s/: the set of representatives of zero ternary forms under the

operation of unimodular matrices of GL3(Z) by the action S -»

USU',

SS: the set of representatives of

G=   U    U  H*a,'2)
s,*0 .s,, = l

under the operation of 0*.
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Then for each S G jtf, there exists a unimodular U in GL3(Z) such that USU' g

Hence we can approximate the series

by the series

£(') =   I ——-,       Rei>2,
lej»' |det jc|

«(0-   E —^       (Rei>2)
A-e^ |det x\

y      y    Zu(ii3'52)

i2^ö»iä-i   (sx3s2)

which contains |(i) as a subseries. If we use the approximate values of zeta-func-

tions as

f(2) = 1.6449341,       f(3) = 1.2020569,

£(5) = 1.0369297,       f(6) = 1.0173431,

it follows that

65     ?(3K(5) s 1 0086268?(2).
48        f(6)

Hence it is possible that |(2) = 2f (2)f (2) (a formula which is hard to verify directly).

Note that the zeta-function |(i) we defined here is a constant multiple of a

subseries of £2(s, L) appearing in [2] (restricted L to zero ternary forms). This tells

us that a constant multiple (the constant is 2"6w"4 by a direct computation from the

Selberg Trace Formula) of |(2) gives the contribution of ternary forms to the

dimension formula of Siegel's cusp forms of degree three with respect to Sp(3, Z).
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