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PADE TABLES OF A CLASS OF ENTIRE FUNCTIONS

D. S. LUBINSKY

Abstract. It is shown that if the Maclaurin series coefficients {a,} of an entire

function satisfy a certain explicit condition, then there exists a sequence ^of integers

such that [ L/Mr] -» /locally uniformly in C as L -> oo, L e Sf, for all nonnegative

integer sequences [M¡ }f=¡. In particular, this condition is satisfied if the {a-}

approach 0 fast enough, or if a subsequence of the {a.} behaves irregularly in a

certain sense. Further, the functions satisfying this condition are dense in the space

of entire functions with the topology of locally uniform convergence. Consequently,

the set of entire functions satisfying the Baker-Gammel-Wills Conjecture is of the

second category.

1. Introduction. Let f(z) = Tff=0ajZj be a formal power series and [L/M] =

plm/Qlm be the L' M padé approximant to/with QLM(0) = 1. In 1961 [2, p. 188],

Baker, Gammel and Wills conjectured that if/ is analytic in \z\ < 1, except for a

finite number of poles, then a subsequence of {[M/M]} converges locally uniformly

in (that is, uniformly in compact subsets of) |z| < 1.

At present there are no counterexamples to this conjecture. In view of a recent

paper of Buslaev, Goncar and Suetin [5] on the rows of the Padé table, it seems

likely that the conjecture is false in the above form, but possibly true when restricted

to entire functions. The most general positive result on pointwise convergence of

diagonal Padé sequences is due to Baker [3]. He shows that, for a large class of

meromorphic functions with simple poles, at most two subsequences of {[N — l/N]}

will produce locally uniform convergence in C, except at poles of /. Because of

duality theory, this implies convergence of subsequences of {[7V/7V — 1]} for a class

of entire functions of order < 1. Diagonal Padé sequences are also known to

converge for Stieltjes series [2], Polya frequency series [1] and other special classes [2,

6]. In this note, we prove

Theorem. Let f(z) = zZ°¡L0 üjZj be entire and transcendental. Assume we are given

K > 0 and nondecreasingpositive numbers [qj] such that

L

(1) kkí/ílí*.       L.-0,1,2,....
k = l

(We show that there exist K, (qj) satisfying (1) with equality for infinitely many L.)
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(a) Assume there exists an infinite sequence y of positive integers such that

(2)

(3)

9l/9l 1/9, Ley,

= K/Y\qk,       Ley.

Then \im, ^x. Ley[L/ML](z) = f(z) locally uniformly in Cfor all nonnegative integer

sequences ( ML)f_x. If further,

(4) lim ML/(qLqL+x)
L—* co

1/2

>oo:Ley Qlm,(z)then, locally uniformly in C, lim/

(b) There exist K, {qL }, ^satisfying (l)-(3) if

,1/i."

f0,

1 and lim Lex;LeSr ' LM, (*)

(5) = P < 1/3.lim sup |azj
L—» oc

(c) The class of entire functions for which there exist K, {qL}, Sr° satisfying (l)-(3) is

dense in the metric space s/ of entire functions equipped with the topology of locally

uniform convergence. Consequently the set 38 of entire functions satisfying (6) is of the

second category in s/:

There exists y such that lim,

(6)

► oo; L ,AWML](z)=f(z) lo-

cally uniformly in C for all sequences {ML} with 0 < ML < e L,

f =12

As far as the author can determine, (b) of the theorem is not contained in Baker's

result [2], even when ML = L + I, L = 0,1,_Further, (c) substantially strengthens

Theorem 1 in Borwein [4], where j/ and sets of the first and second category were

applied for the first time in the context of Padé approximation. We note that { e L}

in (6) can be replaced by an arbitrary sequence.

Regarding weaker types of convergence of diagonal sequences, the Nuttall-

Pommerenke theorem on convergence in capacity [14] is known to be best possible

in various senses [10, 11, 15], as is Wallin's theorem on convergence a.e. [16]. It

seems that no one has yet exhibited an entire function of order 2 (or even of finite

order) for which [M/M] ■** f a.e. in C, thereby showing, as is likely, that Edrei's

result [7] is best possible. It is noteworthy that the counterexamples in [10, 11, 15,

16], although different in construction, all deal with sparse diagonal sequences like

{[2M/2M]} and cannot resolve the Baker-Gammel-Wills Conjecture. Other recent

results for diagonal sequences appear in [8, 9, 12, 17].

2. Proof of the Theorem. For L, M = 0,1,2,..., let

V(L/M;z) = det

'L-M+l

U'

and7)(L/M)=det(a/._;+y)« = 1.

'Z.+1

'L-M+2

,M-\

lL+M-\

'Z.+ 1
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If D(L/M) * 0, then QLM(z) = V(L/M; z)/D(L/M) is the denominator in

[L/M] normalized by QLM(0) = 1. The D(L/M) are row rearrangements of the

C(L/M) used in [2]. This note is based on the observation that if |aL+1|, \aL + 2\,...

are much smaller than \aL\, then both D(L/M), V(L/M; z) = a^, and both can be

transformed into determinants of matrices with dominant diagonal, to which an

inequality of Ostrowski [13] can be applied.

Lemma. Assume (I) and (3). Let

^l/Il+V L = l,2,...,

10, L < 0.

Whenever finite, let

(7) eL=t r{/2{rtl\rL\ ■ ' • r2L+J_2rL+J_x),

oo

(8) PL= Zr(/2{r¿Z\rr2---rlj + 2rL_J + x).
7-1

Assume

(9) 9L + ftL<l,       Le/.

Then for L g y, and M = 1,2,3,...,

(a)

(10) 2~M+l <\D(L/M)a~LM\< (3/2)M'\

(b)

(11) 3-2"+1 < \QLM(z)\ < 3M,        \z\ ^ (qLqL+x)1/2/2.

Proof. Let £, = (qLqL+x)i/2, z = 0, ±1, ±2,....

(a) Multiplying the zth row in D(L/M) by aLl£,Jl and multiplying they'th column

by£y, i, j = 1,2,...,M, we see

say. Then (1) and (3) yield, for L g y,

M f/-l /. M £.-/+/'

i ly^r1 ii-   n   9*+ i c n 9*-1
j=\;j±i \j=t      *-L-i+/+l y-i + 1      Ar = Z.+ l

i-l /. W-i Z.+7

= E;f-7 n ?*+ifj n 9*-1-

Now   for   k < I. — 1,   g* = qLrL_xrL_2 • • • rk   and,   for   zc > L + 2,   ^T1  =

filit+it+a ' ■ • >*-i- Since¿_yí?¿ = £,?£{, = r//2, we see

M i-\ M-i

I     K\ < I ^{r/Zir/r* • • • rL_J + x) +  £ r//2{r¿-¡r¿-2 ■ ■ ■ rL+J_¡)
j=\:j*i j-1 7 = 1

<eL + pL^i.
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Thus, a = max¡Lf=x.j^\bu\/\bu\ < 1. Now, either 0L < 1/2 or pL < 1/2. Assuming

the former is true, apply [13, (8), p. 27] with n = k = M to obtain

A/-1   / M \ M-l   I M \

n i-» E yU|/)(L/M)azMi< n i + o i n
i-l   \ y'-'+l        / ' = 1   \ 7 = / + i        /

and (10) follows, as Ejí,+1|¿,7| < 0L < 1/2. When p, < 1/2, apply [13, (8), p. 27]

with n = M, k = 1.

(b)   Now,   ßz.A/(z) = ^(L/Af; z)/D(L/M),   as   D(L/M) * 0.   We   estimate

K(L/M; z) as in (a): Multiply the zth row in V(L/M; z) by a^"1, i = 1,2,...,M

and multiply the (M + l)th row by £^+i- Further multiply they'th column by £ ,

y = 1,2,...,M+ l.Then

K(L/M;z)aZw=det(c,7)^:11,

where cu■ = 1, z = 1,2,..., M + 1 and, for z = 1,2,..., M,

M+l

L     kzyl < *l + Mz. < 1

as before, while for z = M + 1,

W+l M

I     k7l=I(|z|/^)M+1"<l-2-w
7 = 1;/*/ 7=1

if |z| « |,/2. Applying [13, (8), p. 27] with » - M + 1 and fc = M + 1 if 6L < 1/2

but with /c = 1 if /i¿ < 1/2, we obtain, for |z| < £i/2,

(l/2)2M~l <\V(L/M; z)alM\< 2(3/2)M-\

Applying (10) yields (11).   D

Proof of (a) of the Theorem. As fo } is nondecreasing, r¡ < 1 for allj. Then if

L^y, (2), (7) and (8) imply 0L + pL < 1. Thus (9) holds, and (b) of the Lemma

shows [L/M] has no poles in \z\ < (qLqL + x)1/2/2 for all M > 0. Since/is entire,

limL^00i7L = oo. Using standard techniques [2], the locally uniform convergence of

[L/ML], L g y, follows. When (4) holds, we note that we can write QLM (z) =

n£',(l - z/zLM]) where AT < ML; \zLMj\ > (<7/,4l + i)1/2/2, and so uniformly in a

bounded subset of C, for L g y,

ô,M/(z) = (l + O^+i)"172))"' = 1 + o(l).

Proof of (b) of the Theorem. We first show that for any transcendental /, one

can choose K, {q¡} satisfying (1) with equality for infinitely many integers. Let

(12) K = maxfl,|iz0|).V     f l      i   uij

Define integers 0 =y0 <j\<j2<--- and numbers {q } as follows:

(13) q¿ = (Kl//:)177' = max{(|a,|/f )™;j > l),

t-,A\                   -i       I /     \*Kik*\-Jk) i\     .     AAJ-Jk)   .      . \
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k = 1,2,3,_If there is more than one choice for some/^, k > 1, we always choose

the largest possible value. Define

(15) aj = qJt + l>       jk + l <j ^jk + x,k = 0,l,2,....

It is not hard to see (1) holds, with equality at least if L g fj,, L, j3,...}. Further

by (14), and choice ofjk + x,

i I , |l/(7i + l "A) I . \l/(jk + 2~jk)

q~l   =\a¡    /a¡\ >\a¡    /a A
^Jk + l i    Jk + V      Jk> I    Jk + 2'      7*1

= { n-Uk.2~Jk + On-Uk^-Jk)\1/Uk + 2~Jk)í í! -i        \       I i _í\11/w/c + 2    Jk '

lTZ* + 2 TZt + 1 I

We deduce

(!6) ^<^<^<----
•

As/is entire, we see q} \ oo as/ -» oo.

Now let us assume (5). Let ß = limsupL_00z27/L. Given e > 0, we have for

L > L0(e), and some constant c(e),

K/ ñ qj > c(«) ñ (/8(1 + e)YJ = c(e)(ß(l + e)yL(L+l)/2.

7=1 7=1

Raising to the power L~2 and letting L -» oo through [j\, j2,...}, we obtain

p > (ß(l + e))"1/2, so that ß > p"2. It follows that \iminfL^aoqL/qL+x ^ p2 < 1/9,

and we can choose y for which (2) holds. But (15) shows that whenever qL < qL+x,

necessarily qL = q^ for some k. Thus (3) also holds.

Proof of (c) of the Theorem. For entire/(z) = E^=0 OjZj, g(z) = E"_0 bjZJ, let

d*(f, g) = max{|a7- - bj\1/iJ+1): j 5= 0}. This metric is equivalent to that used by

Borwein [4], and s?is complete and also a Baire space with respect to d*. We first

show that the set # of/for which there exist K, {<?,}, ysatisfying (l)-(3) is dense in

$t. Let K(f), qj(f), jk(f) denote the numbers defined by (12)-(15) for any

transcendental/. Now fix transcendental f(z) = T,JL0 a jZJ and choose L =j„(f),

some n > 1. Choose inductively integers L = L0 < Lx < L2 < ■ ■ ■ such that, for

k = 1,2,3,...,

/,-,\ I /        ,l/(Lk + i-Lk) , xl/(Lk-Lk_x)

(17) K+1/aJ < (V9)\aLl/a, -*-n

Let g(z) = Zj=0ajzJ + Lf^a^z^. We see from (12)-(15) that K(g) = K(f),

1j(g) = 9j(f)J = L 2,... ,L. Further by (17) for y = 1,2,... and k = 0,1,2,...,

{/— 1 \ 1/(i-*+, — Lk)

\a,       /a,      )

(T—r i ,        \(Lt + i+l-Lk + i)/(Lk + 1-Lk)\

/=o I\ 1=0       * + 1 j

-1/7 //J |1/(¿< + 1~L'l)
I *-1   4-   I ' *^ ¿   I
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We   deduce  jn+k(g) = Lk,   k = l,2,...,   and   qL(g)/qL+x(g) < 1/9,   L

{Lx, L2, L3,...}. Thus g g <g. Further,

,1/(7+1)
à*(/, g)< max||o,.| :j > L

which can be made arbitrarily small by choosing L large enough. Hence #is dense in

the transcendental entire functions and so in jrf.

Finally, we show, following [4], that the set 38 of entire functions satisfying (6) is

of the second category. Let WL ¡ = (/: D(L/M) # 0 and [L/M] has no poles in

\z\<j, M=l,2,...,eL), L,j= 1,2,.... Let agj-m \JL>k ¿8kJ, k, j = 1,2,....

Clearly, ® d D^L, D^=1 38* r

Now, by the Lemma, ^c ¡gg. for all k and/. Further, as QLM(z) is continuous

in a0, ax,... ,aL + M whenever D(L/M) # 0, we see 3SL ■ is open for all L, /. Hence

38 ̂ j is open and dense, for all k, j. Asj/is a Baire space, it follows that 38 is of the

second category.   D

Remark. One can improve on 1/3 in (5) in some cases. Assume

\aL\^K{p(l + 8L)}L\       L« 0,1,2,'...',

with equality for L g y, where {ôL} satisfies

(L + l)2log(l + 8t+1) +(L - l)2log(l + SL_,) - 2L2log(l + 8L) < 0,

L = 1,2,—

Set

qL = {p(l + ó/.Or^/ÍPvl + áz,)}L\        L = 1,2,....

Then (1), (3) hold, and we see rL < p2, L = 1,2,.... By (7) and (8),

OO

0¿ + ju¿< G(p) = 2 ¿ pj2,       L = l,2,....

7=1

Clearly, if p0 = 0.4559 • • • is the root of G(p0) = 1, then the conclusions of (a) of

the Theorem remain true if p < p0.

Note added in proof. Further results of this type are given in Padé tables of

entire functions of very slow and smooth growth, to appear in Constructive Approxi-

mation.

References

1. R. J. Arms and A. Edrei, The Padé tables and continued fractions generated by totally positive

sequences. Mathematical Essays Dedicated to A. J. Macintyre, Ohio Univ. Press, 1970, pp. 1-21.

2. G. A. Baker, Jr., Essentials of Padé approximants. Academic Press, New York, 1975.

3. _, Convergence of Padé approximants using the solution of linear functional equations, J. Math.

Phys. 16(1975), 813-822.

4. P. B. Borwein, The usual behaviour of rational approximations, Canad. Math. Bull. 26 (1983),

317-323.

5. V. I. Buslaev, A. A. Goniar and S. P. Suetin, Convergence of subsequences of the mth row of a Padé

table. Mat. Sb. 120 (1983), 540-545. (Russian)

6. A. Edrei, The Padé table of meromorphic functions of small order with negative zeros and positive

poles. Rocky Mountain J. Math. 4 (1974), 175-180.



PADE TABLES OF A CLASS OF ENTIRE FUNCTIONS 405

7. _, The Padé table of functions having a finite number of essential singularities. Pacific J. Math.

56(1975), 429-453.

8. A. A. Goncar and K. N. Lungu, Poles of diagonal Padé approximants and the analytic continuation of

functions. Math. USSR.-Sb. 39 (1981), 255-266.

9. E. Hendriksen and H. Van Rossum, Moment methods in Padé approximation, 3. Approx. Theory 35

(1983), 250-263.
10. D. S. Lubinsky, Diagonal Padé approximants and capacity, 3. Math. Anal. Appl. 78 (1980), 58-67.

11._, Divergence of complex rational approximations. Pacific J. Math. 108(1983), 141-153.

12. D. S. Lubinsky and A. Sidi, Convergence of linear and nonlinear Padé approximants from series of

orthogonal polynomials, Trans. Amer. Math. Soc. 278 (1983), 333-345.

13. A. M. Ostrowski, Note on bounds for determinants with dominant principal diagonal, Proc. Amer.

Math. Soc. 3 (1952), 26-30.

14. Ch. Pommerenke, Padé approximants and convergence in capacity, 3. Math. Anal. Appl. 41 (1973),

775-780.

15. E. A. Rahmanov, On the convergence of Padé approximants in classes of holomorphic functions, Math.

USSR-Sb. 40 (1981), 149-155.

16. H.  Wallin,  77ie convergence of Padé approximants and the size of the power series coefficients,

Applicable Anal. 4 (1974), 235-251.

17.  _, Potential theory and approximation of analytic functions by rational interpolation, Proc.

Complex Analysts Conf. at Joensuu (I. Laine, O. Lehto, T. Sorvali, Editors), Lecture Notes in Math., Vol.

747, Springer, Berlin, 1979, pp. 434-450.

National Research Institute for Mathematical Sciences of the CSIR, P.O. Box 395, Pretoria

0001, Republic of South Africa

■


