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ON AN L APPROXIMATION PROBLEM

ANDRÂS KROÓl

Abstract. Let Cw[a, b] denote the space of real continuous functions with norm

ll/IL = fa\f(x)\ w(x) dx, where w is a positive bounded weight. It is known that if

a subspace Mn c Cw[a, b] satisfies a certain A -property, then M„ is a Chebyshev

subspace of Cw[a, b] for all w. We prove that the /(-property is also necessary for

M„ to be Chebyshev in Cía, b] for each w.

Let W be the set of all measurable bounded weights w on [a, b] such that

inf{w(x): x g [a, b]} > 0. Consider the space Lw[a, b] of real-valued Lebesgue

integrable functions with norm

(1) ll/IL = fh\f(x)\w(x)dx,
"a

where w g W. By the famous theorem of Krein, there are no finite-dimensional

Chebyshev subspaces in Lw[a, b]—for any space Un c Lw[a, b], dimi/„ = n, there

exists / g Lw[a, b] having nonunique best approximation in Un. The situation is

different if we restrict our attention to Cw[a, b], the space of continuous functions

with norm (1). By the classical result of Jackson and Krein, if U„ is a Haar space on

(a, b), then it is a Chebyshev subspace of Cw[a, b] for any w g W. (Recall that an

«-dimensional space of continuous functions on [a, b] is said to be Haar on (a, b) if

its elements have at most n — 1 zeros at (a, b).) Havinson [2] gave a partial converse

of this statement, proving that if U„ is a Chebyshev subspace of Cw[a, b] for any

w g W, and no nontrivial element of U„ vanishes on an interval, then U„ is a Haar

space on (a, b). The assumption that elements of the subspace do not vanish on

intervals is essential in Havinson's theorem, since, as proved in recent years,

different families of splines with fixed nodes are also Chebyshev in Cw[a, b] (see [1,

7, 5]). It turned out that Haar spaces and spline functions have a common property

which is crucial for uniqueness of the Lrapproximation (see Strauss [6], Sommer [5]

and Kroó [3]). Let us give the corresponding definition. Given a space U„ of

continuous functions on [a, b], we set U* = {«*: «* is continuous on [a, b] and

there exists u g U„ such that |zz*| = \u\ on [a, b]}. Then we say that U„ satisfies the

A-property (or is an A-space) if for any u* G U*\ {0} there exists tz g Un\ {0}

such that u = 0 a.e. on Z(zz*) and uu* > 0 on [a, b]\Z(u*). Here, and in what
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follows, Z(f) = [x e [a, b]: f(x) = 0}. Obviously, Haar spaces satisfy the ^-prop-

erty. Moreover, it is known [4-6] that different families of spline functions are also

A -spaces. Furthermore, by a theorem of Strauss [6], A -spaces are Chebyshev in

Cw[a, b] for any w g W. This raises the natural question of whether or not the

^4-property is also necessary in order for a subspace to be Chebyshev in Cw[a, b] for

each w g W. In this paper we give a positive answer to this problem.

Theorem. Let Un be a finite-dimensional subspace of Cw[a, b\ Then in order for Un

to be a Chebyshev subspace of C„[a, b] for each w g W, it is necessary and sufficient

that Un satisfy the A-property.

We also show that Havinson's result can be easily deduced from the above

theorem.

Note that the A -property is not necessary for uniqueness with respect to a given

w g W; see e.g. [5].

Proof of the Theorem. As mentioned above, the sufficiency of the ,4-property

was verified by Strauss [6] (also see [3] for a more general setting).

Let us prove the necessity part of the Theorem.

By a theorem of Strauss [8] U„ c CM,[a, b] is a Chebyshev subspace of Cw[a, b] for

a given we Ifif and only if for any u* g U* \ {0} there exists u G U„ such that

(2) 1 wzzsign u*\ > I        w\u
'N(u*) 'Z(u*)

where N(u*) = [a, b]\Z(u*). Assume now that U„ is Chebyshev in Cw[a, b] for

any w g W and consider an arbitrary u* G U* \ {0}. Then by Strauss's result, for

any w g W there exists u g Un such that (2) holds.

Set Ük= (g g Un: g = 0 a.e. on Z(u*)}. Evidently, Ük is a linear subspace of U„

of some dimension 1 sg k < «, because there exists a function u g Un such that

(3) |w| = |zz*|,       x g [a, b].

Now we state that there exists a g0 g Ük such that, for any w g W,

(4) f        wg0sign«* ¥= 0.
JN(u*)

Assume that, on the contrary, for any g G ¿\, we can find a w g W satisfying

(5) /        wgsignu* = 0.

Let {g,,... ,gk) be a basis in Ük. Then, by (5), for any {¿,}f=1 g R*, there exists

wG W for which

r I k       \ k     r
(6) 0=/        w\'Zb,g,; signzz* = £6,./ wg,signzz*.

JN(u*)      \i=x j i=x     JN(u*)

Set A0 = {(jN(U*)Wg¿sign zz*)f=1: w g W). Evidently, A0 is a convex subset of

R*. Furthermore, (6) implies that A0 has nonempty intersection with any hyperplane

77^ = {c g R*: (d, c) = 0}, where ¿eR*\ {0} is arbitrary and ( • , • ) denotes the
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inner product in R*. Moreover, we claim that A0 is open. Consider an arbitrary point

C g A0. Then for some wc G W,

( \ k

(7) C={Ci}f.1=   /       wc.g,signM*       .

Obviously, the functions g,sign«*, 1 <i" < k, are linearly independent on

(a, b)\Z(u*). Therefore, there exist k distinct points xx,...,xk G (a, b)\Z(u*)

such that the vectors L = (g;(xy)sign u*(xj)}f=x, 1 ^ / < k, are also linearly inde-

pendent in R*. Since the functions g,sign u*,l < i < k, are continuous on the open

set (a, b) \ Z(u*), it follows that, for h > 0 sufficiently small, the vectors

rx, + h
i; = {r+  & sign«*        GR*      (l<j<k)

\J.x,-h I .    ,
J i = l

will also be linearly independent. (We assume that [xj - h, Xj + h] c (a, ¿>)\Z(«*),

1 < / < &.) Let inf^e^ A] wc(x) = 0 > 0 and set, for each 1 < y < &,

/0, *<=[„,é]\[*,- A, *, + *],
(8) w,(x) = ( r ,

y (0/2,       xg [*,-A,*y +A].

Then, evidently, wc + h^ and m>c - Wj belong to W, 1 < j < k. Therefore, setting

tr k

«7■ = { f        (wc + w,)gsign u*\     ,       ßj=    f        (wc - w )g,sign u* \
\JN(u*) 1 i=x \JN(u*) j,_,

for each 1 < / < k, we obtain that a,, ßj e A0 (1 < j < k), and, by (7) and (8),

(9) aj-C=C~ ßj = (0/2)/*,       (1 < j < A).

Since a,, ß,e Aj¡ for each 1 < / < k, we have that, by (9) and convexity of AQ,

7=1 7=1 7 = 1

for any rJt t¡ > 0 such that £j_i('"/ + t,) = 1. This and the linear independence of

vectors If, 1 </ < k, imply that A0 contains a zc-dimensional ball with center at C.

Hence, A0 is open.

Now let us show that 0 g A0. Indeed, if 0 <£ A0, then evidently 0 belongs to the

boundary of A0. Furthermore, given the convex set A0 and the point 0 at its

boundary, we can find a hyperplane Hd such that (d, c) > 0 for every c e A0

(d G R*). On the other hand, A0 should have nonempty intersection with Hd, i.e.,

for some c* g A0, (d, c*> = 0. Moreover, A0 is open, hence there exists a ball 5

with center at c* belonging to A0. Then (d, c) > 0 for every c g S and, therefore,

(d, c*) > 0, a contradiction. By this contradiction, we obtain that 0 g A0, i.e., for

some w g W,

(10) (        wg/Sign u* = 0,        1 < z < zc.
JN(u*)
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Let now U„ be spanned by {g,}"_i, where, as above, {g,}f_x is a basis in Ük. Set

Un'_k = span{gA + 1,. ..,g„). Note that k < n, otherwise (10) would contradict our

initial assumption that for each w G W there exists u G U„ such that (2) holds. Since

Sz(u*)\s\ > ° for anv I «= un'-k \ {°}> for some y0 > 0 we have

(11) /        Ifl^Yo  max   \g(x)\       (gG U„'_k).
JZ(u*) xe[a,b]

Consider now a weight w* equal to w on N(u*) and to ((b - a)/y0)supx(Ela h] w(x)

on Z(u*). Then for any g = g* + | 6 i/„, where g* g Ük and g G t/„"_fc, we have,

by (10) and (11),

/ w*gsign u* =   i
Jn<u*\ J\

ivgsign u*
'N(u*) JN(u*)

< (b - a)   sup   w(x)   max   |g(x)|
*e[a,/>] x^[a,b]

<^T-     SUP     *(*)/ lll=   f VV*|g|.
'0       x£[a,b] JZ(u*) JZ(u*)

This again contradicts our assumption that, for any w g W, there exists a tz g £/„

such that (2) holds.

By this contradiction we obtain that for some g0 g Ük, (4) should be true for any

w G W. This implies that g0u* does not change its sign on N(u*). Indeed, if

(-l)'g0(xi)u*(xi) > 0 (z = 1,2) for some xx, x2 g N(u*), then, also, (-l)g0sign u*

> 0 in a neighborhood of x¡ (i = 1,2) belonging to N(u*). Then for appropriately

chosen wx, w2 g W, we shall have

(-1)7        >v,.g0signW* > 0,       z = l,2.
"Ml „*\'N(u*)

This and convexity of W imply that for some w g W, /^„.^ggsign zz* = 0,

contradicting (4). Therefore, we may assume that g0u* ^0 on 7V(m*) =

[a, b]\Z(u*). Furthermore, since g0 G Ük, it follows that g0 = 0 a.e. on Z(u*).

This proves the /1-property of Un. The theorem is proved.

The next proposition shows that Havinson's result is a consequence of the above

theorem.

Proposition. Let Un be an A-space on [a, b] and assume that elements of U„ do not

vanish on intervals. Then U„ is a Haar space on (a, b).

Proof. Let M(n; n + 1) = Rn<"+1> be the space of all n X (n + 1) matrices.

Denote by M*(n; n + 1) the set of « X (n + 1) matrices all whose n X n determi-

nants are nonzero. It can easily be shown that M*(n; n + 1) is dense in M(n; n + I)

= R"<"+1>(seee.g.[2]).

Assume now that Un is not Haar, i.e., some g0 g U„ \ (0} has n distinct zeros

a < xx < x2 < ■ ■ ■ < xn < b. Set 7,, = [x¡, xi+l) (0 < it < n; x0 = a; xn+x = b) and

consider the matrix

5n,n + 1(w)=(/wgi   ^GM(«;« + 1),
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where w g W and {g,},"=1 is a basis in U„. Furthermore, set B*n + 1 = [Bn n + x(w):

w g W). We state that B*n + x C\ M*(n; n + I) = 0. Assume, to the contrary, that

for some w g W, 7?„ „ + ,(w) g M*(n;n + 1). Then the system of linear equations
n

(12) E ö//" wg,. = 0,        l</<«,
7=0 /,

has nonvanishing solutions zzy # 0, 0 <y < n. Consider now the weight w* g W

equal to laylw on 7, (0 </ < «) and set zz* = |g0|sign zz, on 7, (0 </ < n). Then,

evidently, zz* g £/,*, Z(zz*) = Z(g0), and, by (12), for each g g [/„,

(13)
,*

'Z(u*\

I w*-g  ^   /
J[a,b]\Z(u*) \8o\ •'Zl

On the other hand, by the ^-property, there exists u G Un \ {0} such that u = 0 a.e.

on Z(zz*) and wzz* ̂  0 on [a, b]\Z(u*), which contradicts (13).

Thus B*n + X n M*(zi; « + 1) = 0. Using the fact that M*(n; n + 1) is dense in

R"(" + 1), we obtain that 5*„ + 1 should be nowhere dense in R"<" + 1>, but B*n+1 is a

convex subset of R"*"^1^ and 0 belongs to its boundary. Hence, B*n+X should

belong to a hyperplane, i.e., for some C¡■ ■ eR(l<z<n,0</<«) such that

E,:j\C, j\ > 0, we obtain that for any w g W,

(14) E  E C(J/ wg, = t ,/ H*, = 0,
7 = 0 Z=l (/ 7 = 0     0

where A, = E"_iC,, -g,- g Un, 0 </ < «. Furthermore, it can be easily derived from

(14) that hj = 0 on /,, while at least one of the A ,'s should not be identically zero on

[a, b]. This contradicts our assumption that no element of U„ vanishes on an

interval. The proposition is verified.

Now by the Theorem and the Proposition, we obtain the following

Corollary (Havinson [2]). If Un is a Chebyshev subspace of Cw[a, b] for any

w G W and no nontrivial element of Un vanishes on an interval, then Un is a Haar space

on (a, b).
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