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ON LIPSCHITZ FUNCTIONS OF NORMAL OPERATORS

FUAD kittaneh

Abstract. It is shown that if N and M are normal operators on a separable,

complex Hubert space H, and/is a Lipschitz function on Q = a(N) U a(M) (i.e.,

\f(z) — f(w)\ < k\z - w\ for some positive constant k and all z, w e Q), then

\\f(N)X- Xf(M)\\2 <ik\\NX- XM\\2 for any operator X on H. In particular,

\\f{N)-f(M)\\2<ki\N-M\[2.

Let 77 denote a separable, complex Hilbert space and let B(H) denote the algebra

of all bounded linear operators acting on 77. An operator T g Ti (77) is said to

belong to the Hilbert-Schmidt class C2 in case T,tXTet, ey)|2 = £,||7e,||2 is finite for

some (hence, for all) complete orthonormal systems {e,} in 77. For T G C2, let

||T||2 = (I,-||7>,.||2)1/2 be the Hilbert-Schmidt norm of T. The properties of Hilbert-

Schmidt operators are described in Schatten [9] and Gohberg-Krein [7].

In their work on Scattering theory, W. O. Amrein and D. B. Pearson proved [1,

Theorem 2] that if A is a self adjoint operator with pure continuous spectrum and/is

a Lipschitz function on a(A) (the spectrum of A) i.e., \f(t) — f(s)\ < k\t — j|, then

\\f(A)X - Xf(A)\\2 < k\\AX - XA\\2 for all * g C2. Utilizing Voiculescu's per-

turbation property of normal operators [10], we now establish the following consid-

erable generalization of the Amrein-Pearson result.

Theorem. Let N be a normal operator. Let f be a function defined onQ = o(N). If

\f(z) — f(w)\ < k\z — w\for all z, w G £2 and some positive constant k, then

\\f(N)X - Xf(N)\\2 ^ k\\NX - XN\\2   for all Xe 5(77).

Proof. Given e > 0, let N = De + Ke, where De is diagonal and ||7ve||2 < e [10]. If

Dren = Xnen and X = (x,,) is the corresponding matrix of X, relative to the basis

{e„}, then the (/, /) entry for DeX - XDC is (A, - X^Xjj. Similarly the (z, /) entry

forf(Dc)X - Xf(Dc) is (f(X,)-f(Xj))x¡J. Since

|lA*-*All2 = £|(A,--xy>f/
f. y

and

\\f(Dt)X-Xf(Dt)f2 = E|(/(A,) -f(\j))x,J(2,
• ■j
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it follows that

(*) \\f(De)X-Xf(De)\\2 < k\\DtX- XDC\\2.

Next, let N = jaz dE(z) be the spectral representation of N. Then

Jn
f(N)-f(De))en\\2 = f |/(z)-/(Aj|2z/||7i(z)eJ2

/• 2 2
< k2     V - AJ  </||£(z)é?J

Jçi

= k2\\(N - De)enf.

Consequently, \\f(N) - f(Dc)\\2 < k\\N - 7)J|2 = k\\Ke\\2 < ek. Thus f(N) = f(De)

+ Cf with \\Ct\\2 -» 0 as e -» 0. Since

\\\NX - XN\\2 - \\DtX - XDe\\2\ < \\KtX - XK£\\2 < 2||Ä-(||2||^|| < 2||X||e,

it follows that

lim \\DtX - M = \\NX - XN\\2.

Similarly  we  have  lim^0\\f(Dt)X - Xf(De)\\2 = \\f(N)X - Xf(N)\\2.   The  re-
quired result now follows by letting e -> 0 in ( * ) above.

An alternative proof of the Theorem which was suggested by Professor Ando can

be found in the author's doctoral thesis [8].

Corollary 1 (Fuglede's Theorem modulo C2 [11]). Let N be a normal operator.

Then\\NX- XN\\2 = \\N*X- XN*\\2for all X G B(H).

Proof. Apply the Theorem to the function/(z) = z.

S. K. Berberian's trick allows us to extend the Theorem as follows.

Corollary 2. Let N and M be normal operators and let f be a function defined on

the union of the spectra of N and M. If\f(z)—f(w)\ < zc|z - w\for all z, w G a(N)

U a(M) and some positive constant k, then \\f(N)X - Xf(M)\\2 < k\\NX - XM\\2

for all X g 5(77). In particular, \\f(N) - f(M)\\2 < k\\N - M\\2.

Proof. Define operators L and Y on the space 77 © 77 by

N     0
0     M

0     X
0     0

Then

||yVJ^ — XM\\2 =\\LY - YL\\2

and

||/(7V)AT-A7(M)||2=||/(L)y-y/(L)||2.

Application of the Theorem to L and Y gives the required result.

The special case where X = I in Corollary 2 is of particular interest in perturba-

tion theory of linear operators (see [4-6]). Using the theory of Stieltjes double

operator integrals, M. S. Birman and M. Z. Solomyak proved [3, Theorem 11] that if
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U and V are unitary operators and / is a function defined on the unit circle, whose

derivative/' is Lipschitz of order a > 0, then U — V g C2 implies that/(i/) — f(V)

g C2. The special case where f(z)=\z\ in Corollary 2 above is also of great

importance in the study of quasi-equivalence of quasi-free states of canonical

commutation relations (see [2] and the references there).

For T g 5(77), let the absolute value |T| of T be defined as (t*T)1/2. H. Araki

and S. Yamagami proved [2, Theorem 1] that for any two operators A and B in

ß(77), || \A\ - \B\ \\2 < i/2 \\A - B\\2, and they remarked that \¡2 is the best possible

coefficient for a general A and B. However, if A and B are restricted to be

self adjoint, then the best coefficient is 1 instead of \¡2 .

We conclude the paper with the following extension of the selfadjoint case.

Corollary 3. Let N and M be normal operators. Then || |7V| - \M\ ||2 < ||7V - M\\2.

Proof. Apply Corollary 2 to the function/(z) = |z|.
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