# ON $\left|\bar{N}, p_{n}\right|_{k}$ SUMMABILITY FACTORS 

## HUUSEYIN BOR

AbStract. In this paper a theorem on $\left|\bar{N}, p_{n}\right|_{k}$ summability factors, which generalizes the theorem of Singh [5], has been proved.

1. Introduction. Let $\sum a_{n}$ be a given infinite series with partial sums $s_{n}$. By $u_{n}^{\alpha}$ we denote the $n$th Cesàro mean of order $\alpha(\alpha>-1)$ of the sequence $\left(s_{n}\right)$. The series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}(k \geqslant 1)$, if

$$
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k}<\infty \quad \text { (Flett [3]). }
$$

If we take $\alpha=1$, then $|C, \alpha|_{k}$ summability is the same as $|C, 1|_{k}$ summability. Let $\left(p_{n}\right)$ be a sequence of positive real constants such that $P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty$ as $n \rightarrow \infty$ ( $P_{-1}=p_{-1}=0$ ). The sequence-to-sequence transformation

$$
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \quad\left(P_{n} \neq 0\right)
$$

defines the sequence $\left(t_{n}\right)$ of $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$.

The series $\sum a_{n}$ is said to be summable $\bar{N},\left.p_{n}\right|_{k}(k \geqslant 1)$, if

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty \quad(\text { Bor }[1])
$$

In the special case when $p_{n}=1$ for all values of $n($ resp. $k=1), \bar{N},\left.p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$ (resp. $\left.\left|\bar{N}, p_{n}\right|\right)$ summability. The series $\sum a_{n}$ is said to be bounded $[R, \log n, 1]_{k}(k \geqslant 1)$, if

$$
\sum_{v=1}^{n} v^{-1}\left|s_{v}\right|^{k}=O(\log n) \quad \text { as } n \rightarrow \infty(\text { Mishra [4] })
$$

The series $\sum a_{n}$ is said to be bounded $\left[\bar{N}, p_{n}\right]_{k}(k \geqslant 1)$, if

$$
\sum_{v=1}^{n} p_{v}\left|s_{v}\right|^{k}=O\left(P_{n}\right) \quad \text { as } n \rightarrow \infty(\text { Bor [2] })
$$

[^0]It should be noted that, if we take $k=1$ (resp. $p_{n}=1 / n$ ), then $\left[\bar{N}, p_{n}\right]_{k}$ boundedness is the same as $\left[\bar{N}, p_{n}\right]$ (resp. $\left.[R, \log n, 1]_{k}\right)$ boundedness.
2. Singh [5] proved the following theorem.

Theorem A. If $\sum a_{n}$ is bounded $\left[\bar{N}, p_{n}\right]$ and the sequences $\left(\lambda_{n}\right)$ and $\left(p_{n}\right)$ satisfy the following conditions:
(i) $\sum_{n=1}^{m} p_{n}|\lambda n|=O(1)$,
(ii) $P_{m}\left|\Delta \lambda_{m}\right|=O\left(p_{m}\left|\lambda_{m}\right|\right)$, then the series $\sum a_{n} P_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|$.
3. The object of this paper is to prove the following theorem.

Theorem. If $\sum a_{n}$ is bounded $\left[\bar{N}, p_{n}\right]_{k}$ and the sequences $\left(\lambda_{n}\right)$ and $\left(p_{n}\right)$ satisfy the same conditions in Theorem A , then the series $\sum a_{n} P_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}(k \geqslant 1)$.

Note that, if we take $k=1$ in our theorem, then we have Theorem A.
4. We shall require the following lemma for the proof of our theorem.

Lemma. If the sequences $\left(\lambda_{n}\right)$ and $\left(p_{n}\right)$ satisfy the conditions in Theorem A, then $P_{m}\left|\lambda_{m}\right|=O(1)$ as $m \rightarrow \infty$.

Proof. By Abel's partial summation formula, we have

$$
\begin{aligned}
\sum_{n=1}^{m} p_{n} \lambda_{n} & =\sum_{n=1}^{m-1} P_{n} \Delta \lambda_{n}+P_{m} \lambda_{m} \Rightarrow\left|P_{m} \lambda_{m}\right|=\left|\sum_{n=1}^{m} p_{n} \lambda_{n}-\sum_{n=1}^{m-1} P_{n} \Delta \lambda_{n}\right| \\
& \Rightarrow P_{m}\left|\lambda_{m}\right|<\sum_{n=1}^{m} p_{n}\left|\lambda_{n}\right|+\sum_{n=1}^{m-1} P_{n}|\Delta \lambda n| \\
& =\sum_{n=1}^{m} p_{n}\left|\lambda_{n}\right|+O(1) \sum_{n=1}^{m-1} p_{n}\left|\lambda_{n}\right|=O(1)
\end{aligned}
$$

Hence $P_{m}\left|\lambda_{m}\right|=O(1)$ as $m \rightarrow \infty$.
5. Proof of the theorem. Without any loss of generality we may assume that $a_{0}=s_{0}=0$. Let $T_{n}$ denote the $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum a_{n} P_{n} \lambda_{n}$. Then, by definition, we have

$$
\begin{gathered}
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} P_{v} \sum_{r=0}^{v} a_{r} P_{r} \lambda_{r}=\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{n}-P_{v-1}\right) a_{v} P_{v} \lambda_{v} \\
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} P_{v} a_{v} \lambda_{v}, \quad n \geqslant 1 .
\end{gathered}
$$

Using Abel's transformation, we get

$$
\begin{aligned}
T_{n}-T_{n-1}= & -\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} p_{v} s_{v} \lambda_{v}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} \Delta \lambda_{v} P_{v} s_{v} \\
& -\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} p_{v+1} s_{v} \lambda_{v+1}+p_{n} s_{n} \lambda_{n} \\
= & T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}, \text { say. }
\end{aligned}
$$

To prove the theorem, by Minkowsi's inequality, it is sufficient to show that $\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|T_{n, r}\right|^{k}<\infty$, for $r=1,2,3,4$. Now applying Hölder's inequality, we have

$$
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 1}\right|^{k} \leqslant \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1}\left(P_{v}\left|\lambda_{v}\right|\right)^{k} p_{v}\left|s_{v}\right|^{k} \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1}
$$

Since

$$
\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1}=\left\{\frac{1}{P_{n-1}} \cdot P_{n-1}\right\}^{k-1}=O(1)
$$

we have

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 1}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1}\left(P_{v}\left|\lambda_{v}\right|\right)^{k} p_{v}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left(P_{v}\left|\lambda_{v}\right|\right)^{k} p_{v}\left|s_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(P_{v}\left|\lambda_{v}\right|\right)^{k-1} p_{v}\left|\lambda_{v}\right|\left|s_{v}\right|^{k}=O(1) \sum_{v=1}^{m} p_{v}\left|s_{v}\right|^{k}\left|\lambda_{v}\right| \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| \sum_{r=1}^{v} p_{r}\left|s_{r}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} p_{v}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} P_{v}\left|\Delta \lambda_{v}\right|+O(1) P_{m}\left|\lambda_{m}\right| \\
& =O(1) \sum_{v=1}^{m-1} p_{v}\left|\lambda_{v}\right|+O(1) P_{m}\left|\lambda_{m}\right|=O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

by virture of the lemma and hypothesis. Since, $P_{v}\left|\Delta \lambda_{v}\right|=O\left(p_{v}\left|\lambda_{v}\right|\right)$, similarly we have

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 2}\right|^{k} & =O(1) \sum_{v=1}^{m} p_{v}\left|s_{v}\right|^{k}\left|\lambda_{v}\right| \\
& =O(1) \sum_{v=1}^{m-1} p_{v}\left|\lambda_{v}\right|+O(1) P_{m}\left|\lambda_{m}\right|=O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the lemma and hypothesis. Again, similarly we have

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 3}\right|^{k} & \leqslant \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n}\left(P_{n-1}\right)^{k}}\left\{\sum_{v=1}^{n-1} P_{v} p_{v+1}\left|\lambda_{v+1}\right|\left|s_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1}\left(P_{v}\left|\lambda_{v}\right|\right)^{k} p_{v}\left|s_{v}\right|^{k} \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1}\left(P_{v}\left|\lambda_{v}\right|\right)^{k} p_{v}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left(P_{v}\left|\lambda_{v}\right|\right)^{k} p_{v}\left|s_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(P_{v}\left|\lambda_{v}\right|\right)^{k} p_{v}\left|s_{v}\right|^{k} \frac{1}{P_{v}} \\
& =O(1) \sum_{v=1}^{m}\left(P_{v}\left|\lambda_{v}\right|\right)^{k-1} p_{v}\left|s_{v}\right|^{k}\left|\lambda_{v}\right| \\
& =O(1) \sum_{v=1}^{m} p_{v}\left|s_{v}\right|^{k}\left|\lambda_{v}\right| \\
& =O(1) \sum_{v=1}^{m-1} p_{v}\left|\lambda_{v}\right|+O(1) P_{m}\left|\lambda_{m}\right|=O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the lemma and hypothesis. Finally, we have

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1} & \left|T_{n, 4}\right|^{k}=\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|p_{n} s_{n} \lambda_{n}\right|^{k} \\
& =\sum_{n=1}^{m}\left(P_{n}\left|\lambda_{n}\right|\right)^{k-1} p_{n}\left|\lambda_{n}\right|\left|s_{n}\right|^{k}=O(1) \sum_{n=1}^{m} p_{n}\left|s_{n}\right|^{k}\left|\lambda_{n}\right|=O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

Therefore, we get

$$
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, r}\right|^{k}=O(1) \quad \text { as } m \rightarrow \infty \text { for } r=1,2,3,4
$$

which completes the proof of the theorem.

## References

1. H. Bor, On $\bar{N},\left.p_{n}\right|_{k}$ summability factors of infinite series, J. Univ. Kuwait Sci. 10 (1983), 37-42.
2. $\qquad$ , On $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series, Tamkang J. Math. 15 (1984).
3. T. M. Flett, On an extension of absolute summability and theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957), 113-141.
4. B. P. Mishra, On the absolute Cesàro summability factors of infinite series, Rend. Circ. Mat. Palermo (2) 14 (1965), 189-194.
5. T. Singh, A note on $\left|\bar{N}, p_{n}\right|$ summability factors for infinite series, J. Math. Soc. 12-13 (1977-78), 25-28.

[^0]:    Received by the editors December 6, 1983.
    1980 Mathematics Subject Classification. Primary 40D15.

