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ON \Ñ, p„\k SUMMABILITY FACTORS

HÜSEYlN bor

Abstract. In this paper a theorem on \N, p„\k summability factors, which gener-

alizes the theorem of Singh [5], has been proved.

1. Introduction. Let La„ be a given infinite series with partial sums sn. By u"n we

denote the zzth Cesàro mean of order a (a > —1) of the sequence (sn). The series

T,an is said to be summable \C, a\k (k > 1), if

00 k

E «A1|< - K_x\   < oo        (Flett [3]).
H-l

If we take a = 1, then |C, a\k summability is the same as |C, l\k summability. Let

( p„) be a sequence of positive real constants such that Pn = E"=0pv -» oo as n -» oo

(P_x = p_x = 0). The sequence-to-sequence transformation

1    "
ta = -p-LP„So (Pn*0)

" v = 0

defines the sequence (tn) of (N, pn) mean of the sequence (sn), generated by the

sequence of coefficients (pn).

The series £a„ is said to be summable \N, pn\k (k > 1), if

f (£)'   V-'„-/<oo        (Bor[l]).
n = 1 \  "'• I

In the special case whenp„ = 1 for all values of n (resp. k = 1), |7Y, pn\k summability

is the same as |C, l\k (resp. |7V, pn\) summability. The series T,a„ is said to be bounded

[R, \ogn,l]k(k > 1), if

n
t-

Y^ v~l\sv\   = O(logn)    as n -* oo (Mishra [4]).
D-l

The series Lan is said to be bounded [N, pn]k (k > 1), if

t Po\s„\k = 0(Pn)    as«-oo (Bor [2]).
v-l
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It should be noted that, if we take k = 1 (resp. p„ = l/n), then [TV, pn]k bounded-

ness is the same as [N, pn] (resp. [R, log n, l]k) boundedness.

2. Singh [5] proved the following theorem.

Theorem A. IfHan is bounded [N, pn] and the sequences (A„) and (pn) satisfy the

following conditions:

(i)L^xPn\Xn\ = 0(l),

(ii) PJAXJ = O(pjXj), then the series Ha„P„X„ is summable |/V, p„\.

3. The object of this paper is to prove the following theorem.

Theorem. IfLan is bounded [TV, pn]k and the sequences (Xn) and (pn) satisfy the

same conditions in Theorem A, then the series Y.anPnXn is summable \N, pn\k (k > 1).

Note that, if we take k = 1 in our theorem, then we have Theorem A.

4. We shall require the following lemma for the proof of our theorem.

Lemma. If the sequences (A„) and (p„) satisfy the conditions in Theorem A, then

PJK\" 0(l)asm^ co.

Proof. By Abel's partial summation formula, we have

m m—I

E p„K = E p„ax„ + pmxm - \pmxm\ =
n=l n=1

m m — \

E p„*n - E Pnàxn
n = 1 n = 1

m m — 1

■PJK\< LPn\K\+ LPn\àXn\

m m—\

Lp„\K\+o(i) Et'Ja„|=o(i).
n -1 n = 1

Hence Pm\Xm\ = 0(1) as m -> oo.

5. Proof of the theorem. Without any loss of generality we may assume that

ao = so = 0. Let Tn denote the (TV, pn) mean of the series Y.a„PnXn. Then, by

definition, we have

T« - y E P. I arPrXr = yt(Pn- Pv-i)aBPe\v,
n v = o       r = 0 » (, = o

Tn - T„-i = p p      E Pv-iPBae\v,       n>\.
r„r„-l „=1
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Using Abel's transformation, we get

H-l n-1

T„-  T„-l =  - p p E P„PVSVXV +   p p E Pa^XuPusu
n    n — 1   (, = 1 n    n - 1   v = \

n-\

—p-f-   E   P0Po+lSJ^O+l  + PnSnXn
rnrn-l   ,,= l

= T„.i + T„,2 + Tn,3 + rB,4,   say.

To prove the theorem, by Minkowsi's inequality, it is sufficient to show that

l^=i(P„/p„)k~l\T„ r\k < oo, for r = 1,2,3,4. Now applying Holder's inequality, we

have

im+1/d\* — 1 m + 1        „ n—1

n = 2

Since

,, + '/p\ »i + i «—i /-.    «-i    )

E  £     |r./< E j*- E (J»Jxj)Wxly- Ea
, = 2\P") n = 2   r"r„-l   v = 1 [rn-lu=1       ¡

k-l

we have

ni+l/p\* — 1 m +1 n — 1

E M     |r„/-o(i) E irf- E KPU)*/>„kl
„ = 2 \ Pn I „ = 2 rnrn-\  (, = i

m+1

o(i) E Kk,l)W E  j%-
v=l « = (>+! rnrn-l

m

= o(i) E (J».M)    p„\K\ kl = 0(1) E pK\\K\

m — lv m

= o(i) E IAAJ E Prk\" + o(i)\xj L p>/
r=l r=\ v=l

»l-l

= 0(1) I, PV\AXV\+ 0(l)Pm\Xm\
n=i

= 0(1) E P.IA.I + 0(l)Pm|Am| = 0(1)    as m - oo,
t> = i

by virture of the lemma and hypothesis. Since, PJAAJ = 0(pv\Xv\), similarly we

have

»1+1   /    n    \  *-l''+      I   P    \ m

E  -f     \tJ = o(i) E />ekl*PU
„ = 2 \ f« / ,.-1

»i-l

= 0(1) I pjAj + 0(1)7>JA J = 0(1)    as m - oo,
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by virtue of the lemma and hypothesis. Again, similarly we have

m+\  I p   \k-\ »1 + 1 / «-1

E  -f     lñ/< E    /"   J E o[,+i^„+il kl

m + 1 h — 1 /-.fz—i

= o(i) E p^- E R|x.I)'*aI*J x [y- E a

m + 1 n — 1

= o(i) E ÊT^EtaM aKI
„ = 2     »   n-\  ,.= 1

»i »i + 1

= o(i)E(/^J)W E
n-v + l    -n*n-\

l_

P„

rn -i

o(D E (*.M */»>/-£-
n-l

= 0(1) I ( W)      aWX
W-l

m

= o(i) E /»„klXl
D-l

»1-1

= O(l) E pjAj+ 0(1)PJA„,|= 0(1)    asm -» oo,
i.=i

by virtue of the lemma and hypothesis. Finally, we have

Y íP"\k'\r   \k     Y iPAk~\      x I*

m m

=  E KN)*"1/^»! kl* = 0(1) E Akl* lXJ = °(1)    as m - oo.
«=1 n=l

Therefore, we get

m    I p   \k-l

E    —        fe.T-O(l)    asm -» oo for z-= 1,2,3,4,
„ = 1 \ Pn j

which completes the proof of the theorem.
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