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AN EXTREMAL PROBLEM FOR POLYNOMIALS

WITH NONNEGATIVE COEFFICIENTS

GRADIMIR V. MILOVANOVIC

Abstract. Let W„ be the set of all algebraic polynomials of exact degree « whose

coefficients are all nonnegative. For the norm in L2[0, oo) with generalized Laguerre

weight function w(x) = xae'x (a > -1), the extremal problem C„(a) =

suPfe w (ll/>'ll/l|/,ll)2 is solved, which completes a result of A. K. Varma [7].

1. In this paper we give the complete solution of a problem which has been

investigated recently by A. K. Varma (see [7, 8]). This problem is related to some

previous integral inequalities of Varma [9, 10] and also to the classical inequalities of

A. Markov [4], P. Erdös [1], G. G. Lorentz [2, 3], G. Szegö [5], and P. Turan [6].

Let Wn be the set of all algebraic polynomials of exact degree n, all coefficients of

which are nonnegative, i.e.,

W„ =    P„\P„(x) =   E akxk, ak^0(k = 0,1;...,«)**•*  > "k
k = 0

'0 ,
We denote by W„° the subset of W„ for which a0 = 0 (i.e., P„(0) = 0).

Let w(x) = x"e~x (a > -1) be a weight function on [0, oo), and let ||/||2 = (/, /),

where

(/, g) = rw(x)f(x)g(x) dx       (/, g S L2[0, oo)).

In [7] Varma has investigated the problem of determining the best constant in the

inequality

(i-i) ||p;||2ác„(«)||pj2,

where Pn e Wn. In fact, he has proved

Theorem A. Let P„(x) be an algebraic polynomial of exact degree n with nonegative

coefficients. Then for a ;> (^5  — l)/2,

/    (P'ix)) xae-xdx <-,-r-.-r      P2(x)xae'xdx,
Jo   V   "     " - (2zz + a)(2n + a - 1) JQ     "y   '

equality holding for P„(x) = x". For 0^«S 1/2 we have

(1.2) /   {PAxj)x"e-*dx<L P„2(x)x°e-Xdx.
J0 (2 + a)(l + a) J0
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Moreover, (1.2) is also best possible in the sense that for P„(x) = x" + Xx the

expression on the left can be made arbitrarily close to the expression on the right by

choosing X positive and sufficiently large.

The case a = 1 was considered in [8]. The cases a g (-1,0) and a g (1/2,

(v5 — l)/2) are still open.

2. The object of this paper is to determine

ii      i. 2
7"

(2.1) CM) =   sup  ^\
p„^w„ \\p IIn    nil

for all a g (-1, oo) and, thus, to give a complete solution of the extremal problem

(1.1). Note that the supremum in (2.1) is attained for some Pn g W®. Indeed,

IIp'II IIp'II IIp'II
sup  i&J-   sup        "I      =   sup   o:

Pn*W„   \\P„\\ PnSW0   \\Pn +  <30|| pn<=W„°   \\Pn\\

We begin by proving three lemmas:

Lemma 1. If P„ g Wn then for every x ^ 0 the inequality

(2.2) x{p;(x)2 - pn(x)p;;(x)) î p;(x)p„(x)

holds.

Proof. Let Pn g Wn, i.e., Pn(x) = L"k=0akxk with ak^ 0 (k = 0,1,.. .,n). Using

the Cauchy-Schwarz inequality

E xkyk
k = 0

2

2   /   v   i      |2
s   Ekl    Ekk\ m L* \yk\

k = 0 l\k = 0

for xk = a\/2xk/1 andyk = ka\/2xk/1 (x ^ 0), we obtain

Íkakxk)ílÍakxk)(Ík2akxk),
k=0 I \k=0 )\k=0 I

which is equivalent to (2.2).    D

Lemma 2. 7/Pn g W„°, then for the integrals

J„(a) = rx"e-*P;(x)2dx,

JfOO
x°e-*Pn(x)P^(x)dx       (/ = 0,1,2)

o

the following recurrence relations hold:

InA«) = 4,l(«) - <,l(« - 1) - •/„(«) (« >  "I),

2/„,i(«) - /„,o(«) - <,o(« - 1)       (« > -2).

The proof of this lemma is a simple application of integration by parts and will be

omitted. We note that the integrals I„x(a) and I„0(a — 1) exist for a > -2 because

7>„(0) = 0.



(2.3) Q(«) = ,
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From Lemmas 1 and 2 there immediately follows

Lemma 3. If Pn g W°, then for a > -I,

■/„(«) ^ i{/»,o(«) +(1 - 2«)7„,0(« - 1) +(« - 1)27„,0(« - 2)}.

Theorem. The best constant Cn(a) defined in (2.1) is

1/(2 + a)(l +a) (-K a í a„),

n2/(2n + a)(2n + a - 1)     (ctn ¿¡ a < + oo),

where

(2.4) «„ = \{n + 1)"1((17«2 + 2« + 1)1/2 - 3« + l).

Proof. Let P„ g W„°, i.e., P„(x) = L"k=xakxk (ak ^ 0). Then

PÁx)2 = E bkxk       (bk è 0)
k = 2

and

W2 = /»,o(«)=  £ bkT(k + a + I),
k = 2

where T is the gamma function. Using Lemma 3 we obtain

2n

4^,(«) ^  E **{r(* + a + 1) +(1 - 2a)T(k + a) +(a - l)2T(k + a - 1)},
k = 2

i.e.,

(2.5) Jn(a) S E Hk(ct)bkT(k + a + I),

where

77,(«) = i-/cV(/V + «)(/c + a-l).

From (2.5) it follows that

||7>„fá(   max   77,(«))||PJ2,
\2¿k¿2n I

SO

C„(«)^    max   77,(a).
2^a¿2»

Determining the maximum of f(x) = jc2/(* + a)(x + a — 1) on the interval

[2,2/?], we find that

/772(«)     if-1 <<*<;<*„,
max   HA a) = < .   .

2á*¿2« (772n(a)     ifa„¿a<+oo,

where a„ is given by (2.4).
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In order to show that Cn(a) defined in (2.3) is best possible, i.e. that Cn(a) =

max2s*s2n Hk(a), we consider .Pn(;t) = x" + Xx (X J> 0) and set

e»(*HI*»í/ll*J2-
By a simple computation we find that

.   .       n2T(2n + a - 1) + 2XnT(n + a) + X2T(a + 1)

~ r(2zz + a + I) + 2XT(n + a + 2) + X2T(a + 3)

Since

and

ß„(0) = n2/(2n + a)(2n + a - 1) = 772fl(«)

lim ß„(\) = l/(a + l)(a + 2) = H2(a),
A—* 00

we conclude that Pn(x) = x" is an extremal polynomial for a è> a„. Furthermore, if

-1 < a <; an, there exists a sequence of polynomials, for example,p„ k(x) = x" + kx,

k = 1,2,..., for which

il  /   il2

um M^IL =Q(a).    D
*— Ik.J

Remark. From (2.4) we have ax = (\/5~ - l)/2, a2 = (v73 - 5)/6, a3 =

(vTÖ" - 2)/2, etc. The sequence (ak) is decreasing, i.e., ax > a2 > a3 > ■ ■ ■ > ax,

where «^ = lim,,^«,, = (vTT - 3)/2 = 0.56155.
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