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A MONOTONE PRINCIPLE OF FIXED POINTS

M. R. TASKOVIC

Abstract. In this paper we formulate a new principle of fixed points, and we call it

" monotone principle of fixed points".

A fixed point theorem for set-valued mappings in a complete metric space and

some theorems on fixed points in arbitrary topological spaces are presented in this

paper. Also, we describe a class of conditions sufficient for the existence of a fixed

point which generalize several known results. We introduce the concept of a

contraction principle and CS-convergence. With such an extension, a very general

fixed point theorem is obtained to include a recent result of the author, which

contains, as special cases, some results of J. Dugundji and A. Granas. F. Browder,

D. W. Boyd and J. S. Wong. J. Caristi. T. L. Hicks and B. E. Rhoades, B. Fisher, W.

Kirk and M. Krasnoselskij.

1. Introduction. Let X be a complete metric space with the metric p. In recent

years a great number of papers have presented generalizations of the well-known

Banach-Picard contraction principle. Some of these generalizations refer to results

containing the Schauder fixed point theorem. The purpose of the present paper is to

consider a generalization of the contraction principle by introducing a "monotonic-

ity" condition concerning the iterates of the mapping. We think that this condition

may be adapted for other classes of mappings to obtain some extensions of known

fixed point results.

In [4] Dugundji and Granas obtained a fixed point theorem which is a common

generalization of results of Banach, Browder [2], Krasnoselskij [8], and many others.

In this paper, we extend Dugundji and Granas's and Caristi's theorem and we

describe a class of conditions sufficient for the existence of a fixed point which

generalize several known results.

Let (X, p) be a metric space. A mapping 6: X X X —> R°+ := [0, + oo), not

necessarily continuous, is called compactly positive on X, if

inf{0(.x, y):a < p(x, y) < ß) > 0

for each finite closed interval [a, ß] c R°+\{0}. In a recent paper Dugundji and

Granas [4] investigated a mapping T on a complete metric space (X, p) that satisfies

the following condition: there exist a compactly positive 0 on X such that

(DG) p[Tx,Ty] < p[x, y] - 0(x, y)    for all x, y G X,

and showed that such mappings have a fixed point in X.
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A mapping T: X -* X satisfying (DG) is referred to as weakly contractive. For

x g X, a(x, oo) = {x, Tx, T2x,...} is called the orbit of x. A function g mapping X

into the reals is T-orbitally lower semicontinuous at p if { xn } is a sequence in a(x, oo)

and x„ -» p implies that g(p) < liminf g(x„). A space X is said to be T-orbitally

complete iff every Cauchy sequence which is contained in a(x, oo) for some x g X

converges in X (cf. [6 or 9]).

2. Main result. In this section we introduce the concept of a "monotoneprinciple of

fixed points". We begin with a lemma which is fundamental.

Lemma 1. Let the mapping y: R + -> R+ := (0, +oo) have the properties

(y) (Vf g R + )(y(?) < íA limsupy(z) < t).
v z-t+0 ;

If the bounded double sequence (xm n) of real nonnegative numbers satisfies the

inequality xm+1 B+1 < y(xm „), m, n G N, then it converges to zero.

Proof. Since (xm n) is a bounded sequence in R + , there is a r > 0 such that

lim sup xm „ = t. We claim that t = 0. If t > 0, then

í = limsupx„! + 1 B+i < limsupy(xm J < limsupy(z) < t,
z^t + 0

which is a contradiction. Consequently t = 0, lim xm    = 0.

An immediate corollary of the preceding statement is

Lemma 2 (Taskovic [10]). Let the mapping y: R + -> R+ have the property (y). If

the sequence (x„) of nonnegative real numbers satisfies the condition xn + x «S y(xn),

n G N, then the sequence (xn) tends to zero. The velocity of this convergence is not

necessarily geometrical.

In connection with this, we shall introduce the concept of A T-condition in a space

X; i.e., a metric space X which satisfies the condition of AT-tyne if for some x G X

such that A(T"x, Tn + 1x) -> 0 (n -> oo) implies [A(T"x, Tmx)) is a bounded

double sequence, where A: X X X -* R°+, x -* A(x, Tx) is T-orbitally lower semi-

continuous.

We are now in a position to formulate our main theorem.

Theorem 1 (Monotone principle of f.p.). Let T be a mapping of a metric space

(X, p) into itself and let X be T-orbitally complete with the condition of AT-type.

Suppose that there exists a mapping y: R°,_—> R°+ such that (y) and

(T) A(Tx, Ty) < y(A(x, y))   for any x, y e X,

where A: X X X —> R°+, x <-> A(x, Tx) is T-orbitally lower semicontinuous (or A is

continuous and A(x, x) = 0) and p[x, y] < A(x, y) for all x, y G X. Then T has a

unique fixed point £ G X and T"x -* £ for each Jtel.

Proof. Let x be an arbitrary point in X. We can show then that the sequence of

iterates ( T"x} is a Cauchy sequence. Let n and m(n < m) be any positive integers.
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From (T) we have A(T"x, T" + lx) < y(A(T"~1x, Tnx)), n g N. Applying Lemma

2 to the sequence [A(T"x, T" + 1x)} we obtain A(T"x, Tn + 1x) -+■ 0 (» -* oo). This

implies that {^4(T"x, T"'x)} is a bounded sequence, since X satisfies the condition

of A T-type. Also, from (T) we have

p[T"x, Tmx] < A(T"x, Tmx) < y(A(T"~1x, Tm-lx)).

Applying Lemma 1 to the sequence (A(T"x, Tmx)} we obtain lim A(T"x,Tmx)

= 0; i.e., p[T"x, Tmx] -* 0 (m, n -> 0). This implies that {T"x} is a Cauchy

sequence in X and, hence, by T-orbital completeness, there is a ^ e A" such that

T"x -» | (n -* oo). Since x ►-* /i(x, Tx) is T-orbitally lower semicontinuous at ¿,

p[f, n] < ¿(£, 7?) < ]imMA(T"x, T" + 1x) = 0.

Thus T£ = £, and we have shown that for each x g X the sequence {T"x} converges

to a fixed point of T. (If A is continuous and A(x, x) = 0, then

p[T" + xx, n] < ,4(T" + 1x, Tí) < y(A(T"x, ¿)) < ,4(T"x, £)

implies p[£, T£] < lim ^(T"x, |) = ¿(I, £) = 0; i.e., T¿ = |, and   {T"x} converges

to a fixed point of T.)

We complete the proof by showing that T can have at most one fixed point: for, if

£ =f= T) were two fixed points, then 0 < p[£, ij] < A(£, tj) = /1(T|, T-q) < y(^(|, i?))

< A(i,i\), a contradiction. The proof is complete

Corollary 1 (J. Dugundji and A. Granas [4]). Let (X, p) be a complete metric

space, and T: X -» X weakly contractive:

p[Tx, Ty] < p[x, y] - 6(x, y)   for all x, y G X,

where 0 is compactly positive on X. Then T has a unique fixed point |, and T"x -» £,for

each x G X.

Proof. Let ^(x, y) = p[x, ^], y(0 = t - 0(x, y) for t > f3(x, ̂ ) and y(t) = 0,

0 < / < 6(x, y). It is easy to see that A and y satisfy all the required hypotheses in

Theorem 1. By hypothesis, T is weakly contractive on X; therefore, X satisfies the

condition of y4T-type, i.e., pT-type. Since completeness implies T-orbital complete-

ness, it follows from the theorem that T has a fixed point i g X and T"x -* | for

each x g X.

Corollary 2 (D. W. Boyd and J. S. Wong [1] and F. Browder [2]). Let T be a

self-map on a complete metric space (X, p). Suppose that there exists a continuous

function 3> on R°+ satisfying í>(í) < t for t > 0 such that

(BW) p[Tx,Ty]*zQ(p[x,y])   for all x, y G X.

Then T has a unique fixed point £ and {T"x ) converges to i for all x in X.

Proof. Let A(x, y) = p[x, y] and y(t) = $(i). It is easy to see that A and y

satisfy all the required hypotheses in Theorem 1. Also, from (BW), X satisfies the

condition of A T-type, i.e., pT-type.
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Corollary 3. Let T be a mapping of metric space (X, p) into itself and let X be

T-orbitally complete. Suppose that there exist a G [0,1) and

A(Tx,Ty) ^aA(x,y)   for all x, y G X,

where A: X X X -* R°+, x >-» A(x, Tx) is lower semicontinuous and p[x, y] < A(x, y)

for all x, y G X. Then T has a unique fixed point £ G X and T"x —> |/or each x G X.

3. Some localizations. Let X be a topological space, let T: X -» X, and let B:

X -* R°+ be a T-orbitally lower semicontinuous function on X.

In connection with this, we shall introduce the concept of TCS-convergence in a

space X; i.e., a topological space X satisfies the condition of TCS-convergence if

there exists a point x g X such that B(T"x) —> 0 (n —> oo) implies {T"x) has a

convergent subsequence.

Theorem 2 (Localization monotone principle). Let T be a mapping of a

topological space X into itself, where X satisfies the condition of TCS-convergence.

Suppose that there exists a mapping y: R + —* R°+ such that (y) and

(LT) B(Tx) < y(B(x))   forallx^X,

where B: X —> R + is T-orbitally lower semicontinuous and B(x) = 0 implies T(x) = x.

Then T has a fixed point ¡j, G X.

An immediate corollary of the preceding statement is

Corollary 4. Let T be a mapping of a topological space X into itself with the

property (LT). 7//oz- some x G X the sequence {T"x) has a convergent subsequence,

then T has a fixed point £ G X.

Proof of Theorem 2. Let x be an arbitrary point in X and a(x, oo) the orbit of x

under T. Then, from (LT) we have

B(T" + lx)^y(B(T"x)),        n G N.

Applying Lemma 2 to the sequence {B(T"x)), we obtain B(T"x) -* 0 (n -* oo).

This implies (from TCS-convergence) that its sequence of iterates {T"x} contains a

convergent subsequence {T"x} with limit £ g X Since 5: X -» R0^ is T-orbitally

lower semicontinuous,

£(£) < liminf B(T"-(x)) = liminf B(T"x) = 0

implies that fi(£) = 0, i.e., T(£) = £.

Corollary 5. Lei (X p) ¿>e a complete metric space and g: X —> X an arbitrary

mapping. Suppose for all x G X that g satisfies

(LDG) p[g(x), g2(x)] < p[x, g(x)] - 0(x, g(x)),

where 6 is compactly positive on X. If x >-> p[x, g(x)] z'j g-orbitally lower semicontinu-

ous, then g has a fixed point in X.

Proof. Let B(x) = p[x, g(x)] which is lower semicontinuous on X, and let

y(0 = t - 0(x, g(x)) for t ^ 6(x, g(x)) and y(t) = 0 for 0 < t < 6(x, g(x)); then

B   and   y   satisfy  all  the  required  hypotheses  in  Theorem  2.  (LDG)  implies
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p[g"x, g"+1x] -* 0 (n -* oo) and, since X is a complete metric space, we have (see the

Lemma of Dugundji and Granas [4, p. 142]) that {g"x} converges to some £ g X,

i.e., X that satisfies the condition of TCS-convergence. Hence, it follows from the

theorem that g has a fixed point.

Corollary 6 (T. L. Hicks and B. E. Rhoades [8]). Let (X, p) be a complete

metric space and T: X -» X an arbitrary mapping. Suppose there exists an x G X such

that

(HR) p[Ty,T2y]^hp[y,Ty],        /zg[0,1),

for every y G a(x, oo). Then some £ G X is a fixed point of T if G(x) = p[x, T(x)] is

T-orbitally lower semicontinuous.

Proof. Let 7?(x) = p[x, Tx] and y(t) = ht. Since X satisfies the condition of

TCS-convergence ( X is a complete metric space and

p[T"x, T" + kx] < h"(l - hYlp[x, Tx]),

applying Theorem 2 gives T£ = £ for some £ g X.

Corollary 7 (J. Caristi [3] and W. A. Kirk [7]). Let T be a self-map on a

complete metric space (X, p). Suppose that there exists a lower semicontinuous function

G of X into R°+ such that

(CK) p[x, Tx] < G(x) - G(Tx)   forallx^X.

Then T has a fixed point.

Proof. Since X is complete and from (CK)

oc

£ p[*i>*z+i] < G(x0),
;=o

X satisfies the condition of TCS-convergence. Letting B(x) = G(x) and y(0 = t -

p[x, Tx] for t > p[x, Tx] and y(t) = 0 for 0 < t < p[x, Tx] in (LT) gives

G(Tx) « G{x) - p[x, Tx],       x g X,

i.e., (CK). Hence, it follows from our theorem that T has a fixed point.

Corollary 8 (B. Fisher [5]). If T is a mapping of the complete metric space X into

itself satisfying the inequality

(FB)        p[T2x,Ty] ^ ßmax{p[Tx,T2x],p[y,Ty]}    for all x, y in X,

where 0 < ß < 1, then T has a unique fixed point.

Proof. Let x be an arbitrary point in X. Then, for ^ = x, from (FB) we have

p[T2x,Tx] < y3max{p[T2x,Tx],p[x, Tx]} = ßp[x, Tx].

Hence, for B(x) = p[x, Tx], y(t) = ßt (ß g [0,1)) and, since X satisfies the

condition of TCS-convergence ( X is a complete metric space and p[T"x, T" + kx] <

ß"(l - ß)~lp[x, Tx]), applying Theorem 2 we obtain T£ = £ for some £ g X.

Uniqueness follows immediately from condition (FB).
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