EXTREME POINTS IN DUALS OF COMPLEX OPERATOR SPACES

ÅSVALD LIMA AND GUNNAR OLSEN

ABSTRACT. We show that if X and Y are complex Banach spaces, and K(X, Y) is the space of compact linear operators from X into Y, then ext $B(K(X, Y)^*) = \exp B(X^{**}) \otimes \exp B(Y^*)$.

Introduction. We shall let X and Y be complex Banach spaces and we denote the space of compact linear operators from X into Y by K(X, Y). The space of linear bounded operators is denoted L(X, Y). B(X) is the closed unit ball of X and X^* is the dual space of X, ext B(X) denotes the set of extreme points in B(X).

For
$$x^{**} \in X^{**}$$
 and $y^* \in Y^*$, $x^{**} \otimes y^* \in K(X, Y)^*$ is defined by $x^{**} \otimes y^*(T) = x^{**}(T^*y^*)$.

In [3, Corollary 2], Fakhouri proved that for real spaces

ext
$$B(K(X,Y)^*) \subseteq \text{ext } B(X^{**}) \otimes \text{ext } B(Y^*)$$
.

A generalization of this result was given by Collins and Ruess in [2, Theorem 2.2]. The proofs given in [2 and 3] extend to complex spaces. Ruess and Stegall proved in [8, Theorem 1.3] the converse inclusion. Thus

(*)
$$\operatorname{ext} B(K(X,Y)^*) = \operatorname{ext} B(X^{**}) \otimes \operatorname{ext} B(Y^*).$$

The proof in [8] is valid in the real case only. The object of this short note is to give a proof of the inclusion \supseteq in (*) for the complex case. The main result is

THEOREM 1. For real and complex Banach spaces, we have

(*)
$$\operatorname{ext} B(K(X,Y)^*) = \operatorname{ext} B(X^{**}) \otimes \operatorname{ext} B(Y^*).$$

PROOF OF THE MAIN RESULT. We shall need Lemma 2 to test if $x^{**} \otimes y^*$ is an extreme point.

LEMMA 2. Let $\Phi: X \to C(K)$ be a linear isometry and let $x_0^* \in B(X^*)$ with $||x_0^*|| = 1$. Then $x_0^* \in \text{ext } B(X^*)$ if and only if

(#)
$$\begin{cases} K_0 = \left\{ k \in K : \exists \lambda, |\lambda| = 1, \Phi^*(\partial_k) = \lambda x_0^* \right\} \neq \emptyset \text{ and if } \\ \|\mu\| = 1 = \|\Phi^*\mu\| \text{ with } \Phi^*\mu \in \operatorname{span}\{x_0^*\}, \text{ then } \\ \operatorname{support } \mu \subseteq K_0. \end{cases}$$

Received by the editors May 28, 1984 and, in revised form, September 18, 1984. 1980 Mathematics Subject Classification. Primary 46B20; Secondary 47B05. Key words and phrases. Compact operators, extreme points.

PROOF. Assume (#) is satisfied. Suppose x_1^* , $x_2^* \in B(X^*)$ with $2x_0^* = x_1^* + x_2^*$. Choose $\mu_i \in C(K)^*$ such that $\|\mu_i\| = \|x_i^*\|$ and $x_i^* = \Phi^*\mu_i$ for i = 1, 2. Let $\nu = \mu_1 + \mu_2$. Then we have $1 = \|\nu\| = \|\Phi^*\nu\|$ and $\Phi^*\nu = x_0^*$. By (#), ν is supported by K_0 . Since

$$1 = ||x_0^*|| \le ||\nu|| = |\nu|(K_0) \le \frac{1}{2}(|\mu_1| + |\mu_2|)(K_0) \le 1,$$

 μ_1 and μ_2 are supported by K_0 also. Hence $x_i^* = \Phi^* \mu_i = \lambda_i x_0^*$ for some $|\lambda_i| \le 1$. This is clearly true if μ_i is a discrete measure. If μ_i is not discrete, then we use that we can approximate μ_i in the w^* -topology by discrete measures supported by K_0 and that Φ^* is w^* -continuous.

Thus

$$2x_0^* = x_1^* + x_2^* = \lambda_1 x_0^* + \lambda_2 x_0^*$$

with $|\lambda_i| \le 1$ and it follows that $\lambda_1 = \lambda_2 = 1$. Hence x_0^* is an extreme point.

The converse implication is simple and we shall not give the details.

It is well known that in a compact convex set, the only probability measure representing an extreme point is the point measure with unit mass [1, Corollary I.2.4]. There can be many more complex representing measures but, as the next lemma shows, their support is on a small set.

LEMMA 3. Assume X is a complex Banach space. Let $x_0^* \in \text{ext } B(X^*)$ and let λ be a measure on $B(X^*)$ with $\|\lambda\| \leq 1$ such that

$$x_0^*(x) = \int x^*(x) \ d\lambda(x^*) \quad \text{for all } x \in X.$$

Then support $\mu \subseteq \{\alpha x_0^* : |\alpha| = 1\}$.

PROOF. There is a measurable function Φ on $B(X^*)$ such that $|\Phi| = 1$ a.e. $|\lambda|$ and $\lambda = \Phi|\lambda|$. Define ω : $B(X^*) \to B(X^*)$ by $\omega(x^*) = \Phi(x^*)x^*$. ω is measurable. We define a new measure $\omega(|\lambda|)$ on $B(X^*)$ by

$$\omega(|\lambda|)(f) = \int f(\omega(x^*)) \ d|\lambda|(x^*) = \int f(\Phi(x^*)x^*) \ d|\lambda|(x^*).$$

For $x \in X$, we get

$$\omega(|\lambda|)(x) = \int x(\Phi(x^*)x^*) d|\lambda|(x^*) = \int \Phi(x^*)x^*(x) d|\lambda|(x^*)$$
$$= \int x^*(x) d\lambda(x^*) = x_0^*(x).$$

Thus $\omega(|\lambda|)$ is a probability measure representing $x_0^* \in \operatorname{ext} B(X^*)$. By Corollary I.2.4 in [1], we get $\omega(|\lambda|) = \partial_{x_0^*}$. Suppose V is a compact subset in $B(X^*)$ with $|\lambda|(V) > 0$ and $V \cap \{\alpha x_0^* : |\alpha| = 1\} = \emptyset$. Let $\lambda_1 = \chi_V \lambda$ and $\lambda_2 = \lambda - \lambda_1$. Then we have $\lambda_1 \perp \lambda_2$ and $||\lambda|| = ||\lambda_1|| + ||\lambda_2||$. By Corollary 3 in [7], we get

$$\delta_{x_{0}^{*}} = \omega(|\lambda|) = \omega(|\lambda_{1}|) + \omega(|\lambda_{2}|).$$

If $f \ge 0$ is a continuous function on $B(X^*)$ with f = 0 on $\{\alpha x_0^* : |\alpha| = 1\}$ and f = 1 on $\{\alpha v : |\alpha| = 1, v \in V\}$, then we have

$$0 = \partial_{x_0^*}(f) \ge \omega(|\lambda_1|)(f)$$

=
$$\int f(\Phi(x^*)x^*)\chi_{\nu}(x^*) d|\lambda|(x^*) \ge |\lambda|(V) > 0.$$

This contradiction shows that support $|\lambda| \subseteq \{\alpha x_0^*: |\alpha| = 1\}$.

Before we give the proof of Theorem 1, we shall give the complex version of Lemma 1.5 in [8].

LEMMA 4. Assume $x_0^* \in \text{ext } B(X^*)$ and that μ is a positive measure on $B(X^*)$ with $\|\mu\| \le 1$. If $|x_0^*(x)| \le \int |x^*(x)| d\mu(x^*)$ for all $x \in X$, then support $\mu \subseteq \{\alpha x_0^*: |\alpha| = 1\}$.

PROOF. As in the proof of Lemma 1.5 in [8], we find $h \in L^{\infty}(B(X^*), \mu)$ such that

$$x_0^*(x) = \int x^*(x)h(x^*) d\mu(x^*)$$
 for all $x \in X$.

We have $||hd\mu|| \le 1$ and by Lemma 3 it follows that $hd\mu$ has support in $\{\alpha x_0^*: |\alpha| = 1\}$. Since necessarily, $1 = ||\mu|| = ||hd\mu||$, it follows that support $\mu \subseteq \{\alpha x_0^*: |\alpha| = 1\}$.

PROOF OF THEOREM 1. Let $x_0^{**} \in \text{ext } B(X^{**})$ and $y_0^{**} \in \text{ext } B(Y^{**})$ and let $h^{**} = x_0^{**} \otimes y_0^{**} \in K(X,Y)^{**}$. Let $K = B(X^{**}) \times B(Y^{*})$ with product w^{**} -topology. Let $\Phi: K(X,Y) \to C(K)$ be defined by

$$\Phi(T)(x^{**}, y^{*}) = x^{**}(T^{*}y^{*}).$$

 Φ is a linear isometry. Let $K_0 = \{k \in K: \exists \lambda, |\lambda| = 1, \Phi^*(\delta_k) = \lambda h^*\}$ and let $Z_0 = \{(\alpha x_0^{**}, \beta y_0^*): |\alpha| = |\beta| = 1\}$. Then clearly $Z_0 \subseteq K_0 \subseteq K$.

We shall use Lemma 2 to show that h^* is an extreme point. Suppose μ is a measure on K with $\|\mu\| = 1 = \|\Phi^*\mu\|$ and assume $\Phi^*\mu \in \text{span}\{h^*\}$. Then $\Phi^*\mu = \lambda h^*$ and we may assume $\lambda = 1$.

Let $x^* \in X^*$ and $y \in Y$. Define $T \in K(X, Y)$ by $T(x) = x^*(x)y$. Then we get

$$x_0^{**}(x^*)y_0^*(y) = h^*(T) = \Phi^*\mu(T) = \mu(\Phi(T))$$

$$= \int_K \Phi(T)(x^{**}, y^*) d\mu(x^{**}, y^*)$$

$$= \int_V x^{**}(x^*)y^*(y) d\mu(x^{**}, y^*).$$

Let $\mu_1 = |\mu|_{B(X^{**})}$ and $\mu_2 = |\mu|_{B(Y^*)}$. Then we get

$$|x_0^{**}(x^*)y_0^{*}(y)| \le \int_{B(X^{**})} |x^{**}(x^*)| d\mu_1(x^{**}).$$

Thus it follows that

$$|x_0^{**}(x^*)| \le \int_{B(X^{**})} |x^{**}(x^*)| d\mu_1(x^{**}).$$

By Lemma 4, support $\mu_1 \subseteq \{\alpha x_0^{**}: |\alpha| = 1\}$. Similarly, support $\mu_2 \subseteq \{\beta y_0^{*}: |\beta| = 1\}$. Hence support $\mu \subseteq Z_0 \subseteq K_0$. By Lemma 2, h^* is an extreme point in $B(K(X, Y)^*)$.

Applications. Using Theorem 1, the proof of Theorem 5.6 in [5] extends to the complex case.

THEOREM 5. Let X and Y be real or complex Banach spaces. If K(X,Y) contains a proper M-summand, then Y contains a proper M-summand or X contains a proper M-summand.

For reflexive spaces we get

COROLLARY 6. Assume X is reflexive. If K(X) contains a proper M-ideal, then X or X^* contains a proper M-summand.

COROLLARY 7. For $1 , <math>K(l_p)$ contains no proper M-ideal.

It is well known that the M-ideals coincide with the closed two-sided ideals in C^* -algebras. Thus Corollary 7 gives as a special case the well-known fact that $K(l_2)$ contains no proper closed two-sided ideals. Corollary 7 was first proved by Smith and Ward [9] and Flinn [4]. Corollary 6 extends their result to a much larger class of spaces.

From the proof of Theorem 5.7 in [6], it follows that if $T \in L(X, Y)$ and $\varepsilon > 0$, then there exists $S \in L(X, Y)$, $y_0^* \in \text{ext } B(Y^*)$ and $x_0^{**} \in \text{ext } B(X^{**})$ such that $||S - T|| < \varepsilon$ and $||S|| = x_0^{**}(S^*y_0^*)$. For $h = x_0^{**} \otimes y_0^* \in \text{ext } B(K(X, Y)^*)$, let \hat{h} denote the natural extension to L(X, Y) defined by $\hat{h}(T) = x_0^{**}(T^*y_0^*)$. Thus we have that the convex hull of $\{\hat{h}: h \in \text{ext } B(K(X, Y)^*)\}$ is w^* -dense in $B(L(X, Y)^*)$.

ACKNOWLEDGEMENT. The authors thank the referee for his valuable suggestions. The idea to use Lemma 2 is due to him.

REFERENCES

- 1. E. Alfsen, Compact convex sets and boundary integrals, Ergebnisse Math. Grenzgebiete, Bd. 57, Springer-Verlag, Berlin and New York, 1971.
- 2. H. S. Collins and W. Ruess, Weak compactness in space of compact operators and of vector-valued functions, Pacific J. Math. 106 (1983), 45-71.
- 3. H. Fakhouri, Approximation par des opérateurs compacts ou faiblement compacts à valeurs dans C(X), Ann. Inst. Fourier (Grenoble) 27 (1977), 147–167.
 - 4. P. Flinn, A characterization of M-ideals in $B(l_p)$ for 1 , Pacific J. Math. 98 (1982), 73-80.
- 5. P. Harmand and Å. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1984), 253-264.
- 6. Å. Lima, Intersection properties of balls in spaces of compact operators, Ann. Inst. Fourier (Grenoble) 28 (1978), 35-65.
 - 7. G. Olsen, On the classification of complex Lindenstrauss spaces, Math. Scand. 35 (1974), 237-258.
- 8. W. M. Ruess and C. P. Stegall, Extreme points in duals of operator spaces, Math. Ann. 261 (1982), 535-546.
- 9. R. R. Smith and J. D. Ward, M-ideal structure in Banach algebras, J. Funct. Anal. 27 (1978), 337-349.

DEPARTMENT OF MATHEMATICS AND STATISTICS, NORWEGIAN AGRICULTURAL UNIVERSITY, 1432 Aas - NLH, NORWAY