ANALYTICITY IN THE BOUNDARY OF A PSEUDOCONVEX DOMAIN

ALAN V. NOELL

ABSTRACT. Let D be a bounded pseudoconvex domain with C^{∞} boundary in \mathbb{C}^n , $A^{\infty}(D)$ the algebra of functions holomorphic in D and C^{∞} up to the boundary, and M a compact real-analytic manifold in the boundary which is integral for the complex structure of the boundary and which has no complex tangent vectors. A necessary and sufficient condition that each element of $A^{\infty}(D)$ be real-analytic on M is that the germ of the complexification of M be in the boundary. Examples indicate that the quasi-analyticity of $A^{\infty}(D)$ along M is possible even in the absence of complex manifolds in the boundary.

1. Introduction. We call a smooth manifold M in the boundary of a domain an integral manifold if its tangent space at each point is contained in the maximal complex subspace of the tangent space of the boundary. M is totally real if it has no complex tangent vectors; more precisely, if J is the almost complex structure, the condition is that $T_p(M) \cap JT_p(M) = 0$ for all $p \in M$. A well-known theorem due to Stein states that holomorphic functions which are Lipschitz on D are twice as smooth when restricted to integral curves. (For the precise statement we refer the reader to [9, Corollary 2, p. 443].) In this note we investigate what conditions on D (or ∂D) imply high regularity of functions in $A^{\infty}(D)|M = \{f|M; f \in A^{\infty}(D)\};$ here M is a compact totally real real-analytic integral manifold in ∂D . Our results depend on the notion of a complexification of such a manifold. Suppose M has real dimension m. Locally (near $p \in M$) we take a real-analytic parametrization $\phi: V \to M$, where V is a neighborhood of 0 in \mathbb{R}^m and $\phi(0) = p$. The holomorphic extension Φ of ϕ to a neighborhood V' of 0 in \mathbb{C}^m is nonsingular since M is totally real; then $\Phi(V')$ is a complexification of M near p. Using the compactness of M we combine these to get a complex submanifold M' of a neighborhood W of Mwhich has complex dimension m and which contains M as a submanifold. Details of this construction are in [10, p. 1274]. Note that, assuming the connectedness of $M' \cap W$, for each real-analytic function on M there are a neighborhood W' of M and a unique extension of the function to $H(W' \cap M')$. (Here, as elsewhere, H(N)denotes the algebra of holomorphic functions on the (connected) complex manifold N.) Our main result can then be stated as follows.

THEOREM. Let D be a bounded pseudoconvex domain in \mathbb{C}^n with C^{∞} boundary, M a compact totally real real-analytic integral manifold in ∂D , and M' a complexification of M in W. Then each element of $A^{\infty}(D)|M$ is real-analytic if and only if there is a neighborhood $U \subseteq W$ of M so that $U \cap M' \subseteq \partial D$.

Received by the editors July 5, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 32A40; Secondary 32E25. Key words and phrases. Pseudoconvex domain, integral manifold, complexification.

The proof of this theorem is in $\S 2$. We remark that obviously pseudoconvexity is required in the theorem; furthermore, some minimal smoothness of the boundary is necessary. In fact, Sibony constructed in [8, p. 973] a bounded pseudoconvex domain in \mathbb{C}^2 (with nonsmooth boundary) so that all bounded holomorphic functions on the domain extend to be holomorphic on a strictly larger domain.

Motivation for this work came from a study of interpolation in [6]; there an example is given of a class of domains for which $A^{\infty}(D)$ gains a good deal of smoothness upon restriction to an integral curve. In §3 we further discuss this example as a contrast to the theorem above. In particular, we give the following

EXAMPLE. There exists a convex domain $D \in \mathbb{C}^2$ which is strongly pseudoconvex off of a line segment K so that $A^{\infty}(D)$ is quasi-analytic along a subinterval of K.

Our proof of the theorem depends on the identification of the spectrum of the algebra A^{∞} given by Hakim and Sibony in [3, Theorem 1, p. 128]. Recall that $A^{\infty}(D)$ is a Fréchet algebra with the family of norms given by

$$P_N(f) = \sum_{|lpha| \le N} rac{1}{lpha!} \|D^lpha f\|_{\overline{D}};$$

here, as elsewhere in this note, $||g||_X$ denotes the supremum of |g| on X.

THEOREM (HAKIM-SIBONY). If D is a bounded pseudoconvex domain with C^{∞} boundary, then the space of nonzero continuous complex homomorphisms of $A^{\infty}(D)$ can be identified with \bar{D} .

2. Proof of the theorem. Suppose that, for some neighborhood U of M, $U \cap M' \subseteq \partial D$. If $f \in A^{\infty}(D)$, then $\bar{\partial} f \equiv 0$ in \bar{D} , so f is holomorphic on $U \cap M'$. It follows that f is real-analytic on M. Thus each element of $A^{\infty}(D)|M$ is real-analytic.

For the nontrivial part of the proof, we assume each element of $A^{\infty}(D)|M$ is real-analytic and fix a point $p \in M$. For each $f \in A^{\infty}(D)|M$ there is a neighborhood V of p (depending on f) so that f extends to be holomorphic on $V \cap M'$. Our first step is to remove the apparent dependence of V on f (cf. the argument in [3, p. 131]). Let B(r) denote the open ball with center p and radius r > 0; let X(r) be the Fréchet space of pairs (F, f) with $F \in H(B(r) \cap M')$, $f \in A^{\infty}(D)$, and F = f on $B(r) \cap M$; and, let $\rho(r) : X(r) \to A^{\infty}(D)$ be the restriction map. We know that the union of the images of $\rho(r)$ over $1/r = 1, 2, 3, \ldots$ is $A^{\infty}(D)$, so, for some r_1 , the image of $\rho(r_1)$ is of the second category in $A^{\infty}(D)$. By the open mapping theorem for Fréchet spaces (e.g., [7, p. 47]), $\rho(r_1)$ is surjective. Thus, if $V = B(r_1)$, each element of $A^{\infty}(D)|M$ extends to be holomorphic on $V \cap M'$.

The second step is to show that $V \cap M' \subseteq \bar{D}$. Fix a point $q \in V \cap M'$ and define a complex homomorphism $\chi: A^{\infty}(D) \to \mathbf{C}$ by $\chi(f) := F(q)$ if $f \in A^{\infty}(D)$ and F is an extension of f which is holomorphic on $V \cap M'$. Since the extension is unique, χ is well defined, and the following argument shows that χ is continuous: If $g \in A^{\infty}(D)$, then $|\chi(g)| \leq ||g||_{\bar{D}}$, for otherwise $g - \chi(g)$ would be invertible in $A^{\infty}(D)$, an impossibility. Thus, if $f_j \to f$ in $A^{\infty}(D)$, from $||f_j - f||_{D} \to 0$ it follows that $\chi(f_j) \to \chi(f)$. Hence, χ is continuous. By the aforementioned result of Hakim and Sibony, χ is given by evaluation at a point of \bar{D} , and it is clear that this point must be g. If follows that $g \in \bar{D}$ and so $V \cap M' \subseteq \bar{D}$.

A. V. NOELL

The third step is to show that, in fact, $V \cap M' \subseteq \partial D$. For this we use the fact that there is a function $\sigma \in C(\bar{D})$ which is plurisubharmonic on D and satisfies $\sigma < 0$ on D while $\sigma = 0$ on ∂D ; this is a simple form of the theorem of Diederich and Fornaess [2, Theorem 1, p. 131] on bounded plurisubharmonic exhaustion functions. We claim that σ is actually plurisubharmonic on $V \cap M'$. To see this, fix $q \in V \cap M'$, let \mathbf{n} be the outward unit normal to ∂D at q, and let $V' \subset V$ be a small neighborhood of q. Since $V \cap M' \subseteq \bar{D}$, if $\varepsilon > 0$ is small, then

$$\{t-\varepsilon \mathbf{n};\ t\in V'\cap M'\}\subset D.$$

Thus $\sigma(t)$ is the uniform limit on $V' \cap M'$ of the plurisubharmonic functions $\sigma_{\varepsilon}(t) := \sigma(t - \varepsilon \mathbf{n})$ as $\varepsilon \to 0$; it follows that σ is plurisubharmonic on $V' \cap M'$. Since q was arbitrary, σ is plurisubharmonic on $V \cap M'$, giving the claim. Now σ attains its maximum value at the (relative) interior point p of $V \cap M'$; by the maximum principle, $\sigma \equiv 0$ on $V \cap M'$. Thus $V \cap M' \subseteq \partial D$.

We have shown that, for each $p \in M$, there exists a neighborhood V of p so that $V \cap M' \subseteq \partial D$. It follows that there is a neighborhood $U \subseteq W$ of M so that $U \cap M' \subseteq \partial D$.

REMARK. If $A(D) := H(D) \cap C(\bar{D})$, then it is easy to see that the assumption that $U \cap M' \subseteq \partial D$ for a neighborhood U of M implies that each element of A(D)|M is real-analytic. In fact, fixing $f \in A(D)$ and $q \in U \cap M'$, we get that f is locally near q the uniform limit on M' of holomorphic functions by arguing as for σ in step 3 above. It follows that f|M is real-analytic.

- 3. Example of quasi-analyticity in the boundary. For the example we choose two nonnegative even functions ϕ and χ in $C^{\infty}(\mathbb{R})$ so that
 - (a) each is strictly convex off its zero set;
 - (b) $\chi^{-1}(0) = [-2, 2];$
 - (c) $\phi^{-1}(0) = \{0\}$; and
 - (d) ϕ vanishes to infinite order at 0.

From [6, Example 4.1] we recall the domain D, defined near $K := [-2, 2] \times \{0\}$ in \mathbb{C}^2 , by

$$D:=\left\{(z,w); u+\chi(x)+\phi(y)+v^2\left(1+rac{1}{100}|z|^2
ight)<0
ight\};$$

here we use the notation z = x + iy, w = u + iv. D is convex and strongly pseudoconvex off of K, and K is an integral curve. We put $L := [-1, 1] \times \{0\}$ and

$$I_k = I_k(\phi) := \int_0^1 \phi'(t) t^{-k} dt \quad \text{for } k \ge 1.$$

LEMMA 1. Given $f \in A^{\infty}(D)$ there exists C > 0 so that

$$\|\partial^k f/\partial x^k\|_L \le Ck!I_k \quad \text{for } k \ge 1.$$

PROOF. Lemma 4.1 of [6] gives this estimate with L replaced by $\{(0,0)\}$, and one only needs to check that the estimate holds uniformly on L. For the convenience of the reader, we sketch the proof. If $k \geq 1$ then

$$\frac{\partial^k f}{\partial x^k}(a,0) = -\int_0^1 \frac{d}{dt} \left[\frac{\partial^k f}{\partial x^k}(a, -\phi(t)) \right] dt + \frac{\partial^k f}{\partial x^k}(a, -\phi(1))$$

whenever $-1 \le a \le 1$. The integrand is bounded above by $k! \|\partial f/\partial w\|_{\overline{D}} \phi'(t) t^{-k}$ because of the Cauchy estimates for $\partial f/\partial w$ on discs in \overline{D} of the form

$$\{z; |z-a| \le t\} \times \{-\phi(t)\};$$

the second term is similarly bounded above by $k!||f||_{\overline{D}}$. This gives the desired estimate.

The lemma shows that we can get good regularity for $A^{\infty}(D)|L$ by choosing ϕ so that $I_k(\phi)$ grows slowly with k. The proof of the main theorem shows that we cannot choose ϕ so that, for some $C_1 > 0$,

(*)
$$I_k(\phi) \le C_1^k \quad \text{for } k \ge 1.$$

Here is a more direct proof of this: Put

$$\psi(t) := \left\{ egin{array}{ll} 0 & ext{if } t < 1, \\ \phi'(1/t) & ext{if } t \geq 1. \end{array}
ight.$$

The holomorphic Fourier transform F of ψ defined by

$$F(z) := \int_{-\infty}^{\infty} \psi(t) e^{itz} \, dt \qquad (z \in {f C})$$

would, if (*) held, be an entire function of exponential type (a simple estimate); by the Paley-Wiener Theorem, F would be the Fourier transform of a function with compact support, so ψ would have compact support. Thus (*) implies $\phi \equiv 0$ near 0, contradicting (c) above. In the following lemma we indicate one possible construction of a ϕ whose growth rate approximates (*).

LEMMA 2. Suppose $\{a_k\}$ is an unbounded increasing sequence with $a_1 \geq 1$. Then there exists a function ϕ of the required form with

$$I_k(\phi) \leq a_k^k$$
 for $k \geq 1$.

PROOF. Fix $\lambda \in C^{\infty}(\mathbf{R})$ so that $0 \le \lambda \le 1, \lambda(t) \equiv 0$ if $t \le 1$, and $\lambda(t) \equiv 1$ if $t \ge 2$. If $j \ge 1$, let $c_j := \max\{\|a_j^k \lambda^{(k)}(a_j t)\|_{\mathbf{R}}; \ 0 \le k \le j\}$; then $1 \le c_j < \infty$. We define

$$\psi(t) := \sum_{j=1}^\infty \lambda(a_j t) t^j / (c_j j^j) \quad ext{for } t \geq 0.$$

Then ψ is infinitely differentiable, and $\psi > 0$ if t > 0. A rather crude estimate gives that, for $k \ge 2$,

$$\int_0^1 \psi(t)t^{-k} dt = \sum_{j=1}^\infty \int_{1/a_j}^1 \lambda(a_j t)t^{j-k}/(c_j j^j) dt$$

$$\leq (k-1)a_k^k + 1.$$

If we choose ϕ to be even and satisfy $\phi(0) = \phi'(0) = 0$ while $\phi''(t) = \psi(t)$ for $t \ge 0$, then integration by parts gives that, for some $C_1 > 0$, $I_k(\phi) \le C_1 a_k^k$ for $k \ge 1$. Dividing ϕ by C_1 gives the desired result.

EXAMPLE. Let $a_k = \log k$ for $k \geq 3$, and let ϕ be the corresponding function given in Lemma 2. By Lemma 1, if $f \in A^{\infty}(D)$, then there exists C > 0 so that

$$\|\partial^k f/\partial x^k\|_L \le C(k \log k)^k$$
 for $k \ge 3$.

454 A. V. NOELL

Since $\sum 1/(k \log k) = \infty$, the Denjoy-Carleman Theorem (e.g., [4, Chapter IV, pp. 101 ff.]) implies that $A^{\infty}(D)|L$ is quasi-analytic. We remark that with the choice $\chi(2+t)=\phi(t)$ (for $t\geq 0$) it is straightforward to check that $A^{\infty}(D)|K$ is quasi-analytic.

The above example gives a result about peak sets for $A^{\infty}(D)$. Recall that a closed set E in ∂D is a peak set for $A^{\infty}(D)$ if there exists a function $g \in A^{\infty}(D)$ with g = 0 on E while $\operatorname{Re} g > 0$ on $\overline{D} \setminus E$. K is a peak set for $A^{\infty}(D)$ (take g = -w), but no subset E of $(-1,1) \times \{0\}$ is a peak set for $A^{\infty}(D)$. In fact, if such a set E were a peak set with corresponding function g, the function $f = \exp\left(-1/\sqrt{g}\right) \in A^{\infty}(D)$ would vanish to infinite order on E. By the quasi-analyticity of $A^{\infty}(D)|L$, $f \equiv 0$ on L, so $E \supseteq L$, a contradiction. (A different proof of a related fact about peak sets in K is given in [5, Example 1.1].)

REMARK. In contrast to the above phenomena, A(D) gains no regularity upon restriction to K in the above examples. More precisely, A(D)|K = C(K), i.e., K is an interpolation set for A(D). The proof is as follows: Since K is a peak set, a well-known result from the theory of uniform algebras (e.g., [1, Corollary 2.4.3, p. 104]) implies that A(D)|K is uniformly closed in C(K). In addition, the Stone-Weierstrass Theorem implies that holomorphic polynomials are dense in C(K). Thus A(D)|K = C(K).

REFERENCES

- 1. A Browder, Introduction to function algebras, Benjamin, New York, 1969.
- K. Diederich and J. E. Fornaess, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), 129-141. MR 55 #10728.
- M. Hakim and N. Sibony, Spectre de A(\(\bar{\Omega}\)) pour des domaines bornés faiblement pseudoconvexes réguliers, J. Funct. Anal. 37 (1980), 127-135. MR 81 #46072.
- S. Mandelbrojt, Séries adhérentes, regularisation des suites, applications, Gauthier-Villars, Paris, 1952.
- 5. A. Noell, Peak points in boundaries not of finite type, Pacific J. Math. (to appear).
- 6. ____, Interpolation in weakly pseudoconvex domains in C², Math. Ann. (to appear).
- 7. W. Rudin, Functional analysis, McGraw-Hill, New York, 1973.
- N. Sibony, Prolongement analytique des fonctions holomorphes bornées, C. R. Acad. Sci. Paris Ser. A 275 (1972), 973-976. MR 47 #7062.
- E. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc. (N.S.) 79 (1973), 440-445. MR 47 #3851.
- R. O. Wells, Holomorphic approximation on real-analytic submanifolds of a complex manifold, Proc. Amer. Math. Soc. 17 (1966), 1272–1275. MR 34 #832.

DEPARTMENT OF MATHEMATICS 253-37, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91125