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ANALYTICITY IN THE BOUNDARY
OF A PSEUDOCONVEX DOMAIN

ALAN V. NOELL

ABSTRACT. Let D be a bounded pseudoconvex domain with C*® boundary
in C™, A% (D) the algebra of functions holomorphic in D and C* up to the
boundary, and M a compact real-analytic manifold in the boundary which is
integral for the complex structure of the boundary and which has no complex
tangent vectors. A necessary and sufficient condition that each element of
A°(D) be real-analytic on M is that the germ of the complexification of M
be in the boundary. Examples indicate that the quasi-analyticity of A*°(D)
along M is possible even in the absence of complex manifolds in the boundary.

1. Introduction. We call a smooth manifold M in the boundary of a domain
an ntegral manifold if its tangent space at each point is contained in the maximal
complex subspace of the tangent space of the boundary. M is totally real if it has
no complex tangent vectors; more precisely, if J is the almost complex structure,
the condition is that T,(M)NJT,(M) = 0 for all p € M. A well-known theorem due
to Stein states that holomorphic functions which are Lipschitz on D are twice as
smooth when restricted to integral curves. (For the precise statement we refer the
reader to [9, Corollary 2, p. 443].) In this note we investigate what conditions on
D (or dD) imply high regularity of functions in A*(D)|M = {f|M; f € A>*(D)};
here M is a compact totally real real-analytic integral manifold in dD. Our results
depend on the notion of a complexification of such a manifold. Suppose M has
real dimension m. Locally (near p € M) we take a real-analytic parametrization
¢:V — M, where V is a neighborhood of 0 in R™ and ¢(0) = p. The holomorphic
extension ® of ¢ to a neighborhood V' of 0 in C™ is nonsingular since M is totally
real; then ®(V’') is a complexification of M near p. Using the compactness of M
we combine these to get a complex submanifold M’ of a neighborhood W of M
which has complex dimension m and which contains M as a submanifold. Details
of this construction are in {10, p. 1274]. Note that, assuming the connectedness of
M’ NnW, for each real-analytic function on M there are a neighborhood W' of M
and a unique extension of the function to H(W’'N M’). (Here, as elsewhere, H(N)
denotes the algebra of holomorphic functions on the (connected) complex manifold
N.) Our main result can then be stated as follows.

THEOREM. Let D be a bounded pseudoconver domain in C™ with C*° boundary,
M a compact totally real real-analytic integral manifold in D, and M’ a complez-
tfication of M in W. Then each element of A°(D)|M 1is real-analytic if and only
if there is a neighborhood U CW of M so that UNM' C dD.
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The proof of this theorem is in §2. We remark that obviously pseudoconvexity is
required in the theorem; furthermore, some minimal smoothness of the boundary
is necessary. In fact, Sibony constructed in [8, p. 973] a bounded pseudoconvex do-
main in C2? (with nonsmooth boundary) so that all bounded holomorphic functions
on the domain extend to be holomorphic on a strictly larger domain.

Motivation for this work came from a study of interpolation in [6]; there an
example is given of a class of domains for which A% (D) gains a good deal of
smoothness upon restriction to an integral curve. In §3 we further discuss this
example as a contrast to the theorem above. In particular, we give the following

EXAMPLE. There exists a convex domain D € C? which is strongly pseudocon-
vex off of a line segment K so that A>°(D) is quasi-analytic along a subinterval of
K.

Our proof of the theorem depends on the identification of the spectrum of the
algebra A°° given by Hakim and Sibony in [3, Theorem 1, p. 128]. Recall that
A>(D) is a Fréchet algebra with the family of norms given by

Pu(f)= Y =ID*fl5;

la|<N
here, as elsewhere in this note, ||g||x denotes the supremum of |g| on X.

THEOREM (HAKIM-SIBONY). If D is a bounded pseudoconver domain with

C boundary, then the space of nonzero continuous complex homomorphisms of
A(D) can be identified with D.

2. Proof of the theorem. Suppose that, for some neighborhood U of M,
UNM'CAD. If f € A°(D), then df =0 in D, so f is holomorphic on U N M".
It follows that f is real-analytic on M. Thus each element of A®°(D)|M is real-
analytic.

For the nontrivial part of the proof, we assume each element of A (D)|M is real-
analytic and fix a point p € M. For each f € A®(D)|M there is a neighborhood
V of p (depending on f) so that f extends to be holomorphic on V N M’. Our first
step is to remove the apparent dependence of V on f (cf. the argument in [3, p.
131]). Let B(r) denote the open ball with center p and radius r > 0; let X(r) be
the Fréchet space of pairs (F, f) with F € H(B(r)NM'), f € A°(D),and F = f
on B(r)N M; and, let p(r) : X(r) — A% (D) be the restriction map. We know that
the union of the images of p(r) over 1/r =1,2,3,...is A*(D), so, for some ry, the
image of p(r,) is of the second category in A~ (D). By the open mapping theorem
for Fréchet spaces (e.g., (7, p. 47]), p(r1) is surjective. Thus, if V = B(r;), each
element of A (D)|M extends to be holomorphic on V N M’.

The second step is to show that V. N M’ C D. Fix a point ¢ € V N M’ and
define a complex homomorphism x : A%°(D) — C by x(f) := F(q) if f € A>(D)
and F is an extension of f which is holomorphic on V' N M’. Since the extension is
unique, x is well defined, and the following argument shows that x is continuous:
If g € A°(D), then |x(g)| < |lgll5, for otherwise g — x(g) would be invertible in
A*(D), an impossibility. Thus, if f; — f in A%(D), from ||f; — f|lp — 0 it follows
that x(f;) — x(f)- Hence, x is continuous. By the aforementioned result of Hakim
and Sibony,  is given by evaluation at a point of D, and it is clear that this point
must be q. If follows that ¢ € D and so V. N M’ C D.
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The third step is to show that, in fact, V N M’ C dD. For this we use the fact
that there is a function ¢ € C(D) which is plurisubharmonic on D and satisfies
0 < 0 on D while ¢ = 0 on dD; this is a simple form of the theorem of Diederich
and Fornaess (2, Theorem 1, p. 131] on bounded plurisubharmonic exhaustion
functions. We claim that o is actually plurisubharmonic on V N M’. To see this,
fix g € VN M', let n be the outward unit normal to 8D at ¢, and let V/ C V be a
small neighborhood of ¢. Since VN M’ C D, if € > 0 is small, then

{t—en; teV' NM'}CD.

Thus o(t) is the uniform limit on V'N M’ of the plurisubharmonic functions o, (t) :=
o(t —en) as € — 0; it follows that o is plurisubharmonic on V' N M’. Since q was
arbitrary, o is plurisubharmonic on V N M’, giving the claim. Now o attains its
maximum value at the (relative) interior point p of V N M’; by the maximum
principle, 6 =0on VN M’. Thus VN M’ C3D.

We have shown that, for each p € M, there exists a neighborhood V of p so
that VN M’ C 3D. It follows that there is a neighborhood U C W of M so that
UnM CaD.

REMARK. If A(D) := H(D) N C(D), then it is easy to see that the assumption
that UNM’ C 9D for a neighborhood U of M implies that each element of A(D)|M
is real-analytic. In fact, fixing f € A(D) and ¢ € U N M’, we get that f is locally
near ¢ the uniform limit on M’ of holomorphic functions by arguing as for o in step
3 above. It follows that f|M is real-analytic.

3. Example of quasi-analyticity in the boundary. For the example we
choose two nonnegative even functions ¢ and x in C*°(R) so that

(a) each is strictly convex off its zero set;

(b) x“(O =[-2,2};

(c) $71(0) = {0}; and

(d) ¢ vanishes to infinite order at 0.
Fr;)m [6, Example 4.1] we recall the domain D, defined near K := [-2,2] x {0} in
C*, by

D:= {(z,w);u + x(z) + ¢(y) + v? (1 + —|z|2> < 0} ;

100
here we use the notation z = z + 4y, w = u + 1. D is convex and strongly
pseudoconvex off of K, and K is an integral curve. We put L := [—1,1] x {0} and

1
I = I(9) = /0 #(t)t-*dt for k> 1.

LEMMA 1. Given f € A®(D) there exists C > 0 so that
6% £/9z ||, < Ck!Ix  for k> 1.

PROOF. Lemma 4.1 of (6] gives this estimate with L replaced by {(0,0)}, and
one only needs to check that the estimate holds uniformly on L. For the convenience
of the reader, we sketch the proof. If k > 1 then

k 1 k
00 = [ 415 o) a+ 5L e -ot)
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whenever —1 < a < 1. The integrand is bounded above by k!||0f/0w||5¢’ (t)t—*
because of the Cauchy estimates for 9 f/dw on discs in D of the form

{2 |z —al <t} x {-¢(t)};
the second term is similarly bounded above by k!|f||5. This gives the desired
estimate.
The lemma shows that we can get good regularity for A>°(D)|L by choosing ¢
so that Ix(¢) grows slowly with k. The proof of the main theorem shows that we
cannot choose ¢ so that, for some C; > 0,

(%) Ix(¢) < C¥ for k> 1.
Here is a more direct proof of this: Put

ift<1,
w(t) = { S/ ift>1

The holomorphic Fourier transform F' of ¢ defined by
F(z):= / P(t)et dt (z€C)

would, if (%) held, be an entire function of exponential type (a simple estimate);
by the Paley-Wiener Theorem, F' would be the Fourier transform of a function
with compact support, so 1) would have compact support. Thus () implies ¢ =0
near 0, contradicting (c) above. In the following lemma we indicate one possible
construction of a ¢ whose growth rate approximates (x).

LEMMA 2. Suppose {ax} is an unbounded increasing sequence with a; > 1.
Then there ezists a function ¢ of the required form with

Li(¢) <ak fork>1.
PROOF. Fix A € C®°(R) so that 0 < A < 1,A(t) =01if t <1, and A(t) = 1 if
t>2 If j > 1, let ¢; := max{[|[a¥A(¥) (¢;t)|lr; 0 < k < j}; then 1 < ¢; < co. We
define

»(t) =Y Aa;t)t/(¢;57) fort>0.
Jj=1
Then % is infinitely differentiable, and ¥ > 0if t > 0. A rather crude estimate gives
that, for k > 2,

/ Y(t)tFdt = 2/1 Ma;t)t' % /(c;57) dt

(k - 1 ak + 1
If we choose ¢ to be even and satisfy ¢(0) = ¢’(0) = 0 while ¢”(t) = y(t) for t > 0,
then integration by parts gives that, for some C; > 0, Ix(¢) < Cla’,j for k > 1.
Dividing ¢ by C; gives the desired result.
EXAMPLE. Let ax = log k for k > 3, and let ¢ be the corresponding function
given in Lemma 2. By Lemma 1, if f € A%(D), then there exists C > 0 so that

0% f/0z¥||L < C(klog k)* for k > 3.
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Since " 1/(klog k) = oo, the Denjoy-Carleman Theorem (e.g., [4, Chapter IV,
pp. 101 ff.]) implies that A°°(D)|L is quasi-analytic. We remark that with the
choice x(2 +t) = ¢(t) (for t > 0) it is straightforward to check that A>(D)|K is
quasi-analytic.

The above example gives a result about peak sets for A~°(D). Recall that a
closed set E in 8D is a peak set for A>°(D) if there exists a function g € A®(D)
with g = 0 on E while Reg > 0 on D\E. K is a peak set for A®(D) (take g = —w),
but no subset E of (—1,1) x{0} is a peak set for A>°(D). In fact, if such a set E were
a peak set with corresponding function g, the function f = exp (—1/ \/6) € A=(D)
would vanish to infinite order on E. By the quasi-analyticity of A*°(D)|L, f =0
on L, so E D L, a contradiction. (A different proof of a related fact about peak
sets in K is given in [5, Example 1.1].)

REMARK. In contrast to the above phenomena, A(D) gains no regularity upon
restriction to K in the above examples. More precisely, A(D)|K = C(K), i.e.,
K is an interpolation set for A(D). The proof is as follows: Since K is a peak
set, a well-known result from the theory of uniform algebras (e.g., [1, Corollary
2.4.3, p. 104]) implies that A(D)|K is uniformly closed in C(K). In addition,
the Stone-Weierstrass Theorem implies that holomorphic polynomials are dense in
C(K). Thus A(D)|K = C(K).
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