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ANALYTICITY IN THE BOUNDARY
OF A PSEUDOCONVEX DOMAIN

ALAN V. NOELL

ABSTRACT. Let D be a bounded pseudoconvex domain with C°° boundary

in Cn, A°°(D) the algebra of functions holomorphic in D and C°° up to the

boundary, and M a compact real-analytic manifold in the boundary which is

integral for the complex structure of the boundary and which has no complex

tangent vectors. A necessary and sufficient condition that each element of

A°°(D) be real-analytic on M is that the germ of the complexification of M

be in the boundary. Examples indicate that the quasi-analyticity of A°°(D)

along M is possible even in the absence of complex manifolds in the boundary.

1. Introduction. We call a smooth manifold M in the boundary of a domain

an integral manifold if its tangent space at each point is contained in the maximal

complex subspace of the tangent space of the boundary. M is totally real if it has

no complex tangent vectors; more precisely, if J is the almost complex structure,

the condition is that TV(M)C\JTP(M) = 0 for all p € M. A well-known theorem due

to Stein states that holomorphic functions which are Lipschitz on D are twice as

smooth when restricted to integral curves. (For the precise statement we refer the

reader to [9, Corollary 2, p. 443].) In this note we investigate what conditions on

D (or dD) imply high regularity of functions in A°°(D)\M = {f\M; f G A°°(D)};
here M is a compact totally real real-analytic integral manifold in dD. Our results

depend on the notion of a complexification of such a manifold. Suppose M has

real dimension m. Locally (near p G M) we take a real-analytic parametrization

</>: V —> M, where V is a neighborhood of 0 in Rm and 4>(0) = p. The holomorphic

extension $ of <f> to a neighborhood V of 0 in Cm is nonsingular since M is totally

real; then 4(V) is a complexification of M near p. Using the compactness of M

we combine these to get a complex submanifold M' of a neighborhood W of M

which has complex dimension m and which contains M as a submanifold. Details

of this construction are in [10, p. 1274]. Note that, assuming the connectedness of

M' C\W, for each real-analytic function on M there are a neighborhood W of M

and a unique extension of the function to H(W D M'). (Here, as elsewhere, H(N)

denotes the algebra of holomorphic functions on the (connected) complex manifold

N.) Our main result can then be stated as follows.

THEOREM. Let D be a bounded pseudoconvex domain in Cn with C°° boundary,

M a compact totally real real-analytic integral manifold in dD, and M' a complex-

ification of M in W. Then each element of Aco(D)\M is real-analytic if and only

if there is a neighborhood U Ç W of M so that U D M' Ç dD.
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The proof of this theorem is in §2. We remark that obviously pseudoconvexity is

required in the theorem; furthermore, some minimal smoothness of the boundary

is necessary. In fact, Sibony constructed in [8, p. 973] a bounded pseudoconvex do-

main in C2 (with nonsmooth boundary) so that all bounded holomorphic functions

on the domain extend to be holomorphic on a strictly larger domain.

Motivation for this work came from a study of interpolation in [6]; there an

example is given of a class of domains for which A°°(D) gains a good deal of

smoothness upon restriction to an integral curve. In §3 we further discuss this

example as a contrast to the theorem above. In particular, we give the following

EXAMPLE. There exists a convex domain D c C2 which is strongly pseudocon-

vex off of a line segment K so that A°°(D) is quasi-analytic along a subinterval of

K.
Our proof of the theorem depends on the identification of the spectrum of the

algebra A°° given by Hakim and Sibony in [3, Theorem 1, p. 128]. Recall that

A°°(D) is a Fréchet algebra with the family of norms given by

P»W= £ ÎIIWIIô;
\a\<Ni   i_

here, as elsewhere in this note, \\g\\x denotes the supremum of \g\ on X.

THEOREM (HAKIM-SIBONY). If D is a bounded pseudoconvex domain with

C°° boundary, then the space of nonzero continuous complex homomorphisms of

A°°(D) can be identified with D.

2. Proof of the theorem. Suppose that, for some neighborhood U of M,

U n M' Ç dD. If / G A°°(D), then df = 0 in D, so / is holomorphic on U n M'.
It follows that / is real-analytic on M. Thus each element of A°°(D)\M is real-

analytic.

For the nontrivial part of the proof, we assume each element of A°°(D)|M is real-

analytic and fix a point p € M. For each / G A°°(D)|M there is a neighborhood

V of p (depending on /) so that / extends to be holomorphic onVDM'. Our first

step is to remove the apparent dependence of V on / (cf. the argument in [3, p.

131]). Let B(r) denote the open ball with center p and radius r > 0; let X(r) be

the Fréchet space of pairs (F, f) with F G H(B(r) n M'), f G A°°(D), and F = f
on B(r) DM; and, let p(r) : X(r) —> A°°(D) be the restriction map. We know that

the union of the images of p(r) over 1/r = 1,2,3,... is A°°(D), so, for some n, the

image of p(r\) is of the second category in A°°(D). By the open mapping theorem

for Fréchet spaces (e.g., [7, p. 47]), p(ri) is surjective. Thus, if V = B(r\), each

element of A°°(D)\M extends to be holomorphic onVnM'.

The second step is to show that V D M' Ç D. Fix a point q G V Q M' and

define a complex homomorphism \ : A°°(D) —► C by xif) '■— F(l) if / G A°°(D)
and F is an extension of / which is holomorphic onVíl M'. Since the extension is

unique, x is well defined, and the following argument shows that \ is continuous:

If g G A°°(D), then \x(g)\ < II¡7Ho) for otherwise g - x(g) would be invertible in

A°°(D), an impossibility. Thus, if fá U /in A°°(D), from \\fj - f\\D -► 0 it follows
that x(fj) —* x(f)- Hence, x 1S continuous. By the aforementioned result of Hakim

and Sibony, x is given by evaluation at a point of D, and it is clear that this point

must be q. If follows that q G D and so V n M' Ç D.
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The third step is to show that, in fact, V n M' Ç dD. For this we use the fact

that there is a function a G C(D) which is plurisubharmonic on D and satisfies

o < 0 on D while a = 0 on dD; this is a simple form of the theorem of Diederich

and Fornaess [2, Theorem 1, p. 131] on bounded plurisubharmonic exhaustion

functions. We claim that a is actually plurisubharmonic on V D M'. To see this,

fix q G V Pi M', let n be the outward unit normal to dD at q, and let V C V be a

small neighborhood of q. Since V n M' Ç D, if e > 0 is small, then

{i-en; tGVnM'} CD.

Thus a(t) is the uniform limit on V'ClAf of the plurisubharmonic functions o£(t) :—

a(t — en) as s —» 0; it follows that zr is plurisubharmonic on V fl M'. Since q was

arbitrary, tr is plurisubharmonic on V fl M', giving the claim. Now o attains its

maximum value at the (relative) interior point p of V fl M'; by the maximum

principle, a = 0 on V n M'. Thus VnM'Ç dD.

We have shown that, for each p £ M, there exists a neighborhood V of p so

that V D M' C dD. It follows that there is a neighborhood U Ç W of M so that

U n M' Ç <9D.
REMARK. If A(D) := 77(D) n C(D), then it is easy to see that the assumption

that UnM' Ç dD for a neighborhood U of M implies that each element of A(D)\M

is real-analytic. In fact, fixing / G A(D) and q G U O M', we get that / is locally

near q the uniform limit on M' of holomorphic functions by arguing as for o in step

3 above. It follows that f\M is real-analytic.

3.   Example of quasi-analyticity in the boundary. For the example we

choose two nonnegative even functions qb and x in C7°° (R) so that

(a) each is strictly convex off its zero set;

(b)X-1(0) = [-2,2];

(c) *-i(0j = {0}; and

(d) <f> vanishes to infinite order at 0.

From [6, Example 4.1] we recall the domain D, defined near K := [—2,2] x {0} in

C2,by

D := j (z, w); u + x(i) + <t>(y) + v2 (l + ^ |2|2J < 0j ;

here we use the notation z = x + iy, w = u + iv. D is convex and strongly

pseudoconvex off of K, and K is an integral curve. We put L := [—1,1] x {0} and

/'./o
7fc = Ik(<p) := /     tp'(t)t-kdt   for k > 1.

LEMMA 1.   Given f G A°°(D) there exists C > 0 so that

\\dkf/dxk\\L<Ck\Ik   fork>l.

PROOF. Lemma 4.1 of [6] gives this estimate with L replaced by {(0,0)}, and

one only needs to check that the estimate holds uniformly on L. For the convenience

of the reader, we sketch the proof. If k > 1 then

dkf

dxk (û'o)-/„^[S(a'-Hdi+S(a'^(1))
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whenever — 1 < a < 1. The integrand is bounded above by k\\\df/dw\\D(p'(t)t~k

because of the Cauchy estimates for df/dw on discs in D of the form

r    i i ^ +i ^ r   Aitu{z; \z-a\ < t) x {-tp(t)};

the second term is similarly bounded above by fc!||/||ö-   This gives the desired

estimate.

The lemma shows that we can get good regularity for A°°(D)|L by choosing <b

so that Ik(<f>) grows slowly with k. The proof of the main theorem shows that we

cannot choose <j> so that, for some C\ > 0,

(*) h(<S>) < Ck    for k > 1.

Here is a more direct proof of this: Put

if t < 1,

(1/Í)        iff>l.

The holomorphic Fourier transform F of ib defined by

m-.= {l,{

/oo ib(t)eitzdt        (zeC)
-oo

would, if (*) held, be an entire function of exponential type (a simple estimate);

by the Paley-Wiener Theorem, F would be the Fourier transform of a function

with compact support, so ib would have compact support. Thus (*) implies <b = 0

near 0, contradicting (c) above. In the following lemma we indicate one possible

construction of a 0 whose growth rate approximates (*).

LEMMA 2. Suppose {afc} is an unbounded increasing sequence with oi > 1.

Then there exists a function <¡> of the required form with

h{<¡»)<4   fork>l.

PROOF. Fix A G C°°(R) so that 0 < A < l,A(i) = 0 if t < 1, and A(i) = 1 if

t > 2. If 7 > 1, let Cj := max{\\akXik)(a3t)\\R; 0 < k < j}; then 1 < c3■ < oo. We

define
oo

t/> (t) : = ]T A (a31)tj /(cjji )    for t > 0.

Then ib is infinitely differentiable, and ib > 0 if t > 0. A rather crude estimate gives

that, for k > 2,

rl oo      „i

/    tl)(t)t~k dt = Y\ i       X(a:jt)t^k/(cjj:>)dt
Jo j^Jl/a,

<(k-1)4 +1.

If we choose <p to be even and satisfy 0(0) = cf>'(0) = 0 while <A"(i) = ip(t) for t > 0,

then integration by parts gives that, for some C\ > 0, Ik(4>) < Ciflfe f°r fc > 1.

Dividing <p by C\ gives the desired result.

EXAMPLE. Let ak = log k for k > 3, and let <p be the corresponding function

given in Lemma 2. By Lemma 1, if / G A°°(D), then there exists C > 0 so that

||dfc//dzfc||L<c7(zclogfc)fc    forfc>3.
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Since ^l/(fclog k) — oo, the Denjoy-Carleman Theorem (e.g., [4, Chapter IV,

pp. 101 ff.]) implies that A°°(D)\L is quasi-analytic. We remark that with the

choice x(2 + t) = (b(t) (for t > 0) it is straightforward to check that A°°(D)\K is

quasi-analytic.

The above example gives a result about peak sets for A°°(D). Recall that a

closed set E in dD is a peak set for A°°(D) if there exists a function g G A°°(D)

with g = 0 on E while Re g > 0 on D\7i. K is a peak set for A°°(D) (take g = —w),

but no subset E of (—1,1) x {0} is a peak set for A°°(D). In fact, if such a set E were

a peak set with corresponding function g, the function / = exp (—l/^/g) G A°°(D)

would vanish to infinite order on E. By the quasi-analyticity of A°°(D)\L, / = 0

on L, so E D L, a contradiction. (A different proof of a related fact about peak

sets in K is given in [5, Example 1.1].)

REMARK. In contrast to the above phenomena, A(D) gains no regularity upon

restriction to K in the above examples. More precisely, A(D)\K = C(K), i.e.,

K is an interpolation set for A(D). The proof is as follows: Since K is a peak

set, a well-known result from the theory of uniform algebras (e.g., [1, Corollary

2.4.3, p. 104]) implies that A(D)\K is uniformly closed in C(K). In addition,

the Stone-Weierstrass Theorem implies that holomorphic polynomials are dense in

C(K). Thus A(D)\K = C(K).
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