ON SURFACES IN R4

WALTER SEAMAN

ABSTRACT. We provide answers (Theorem C) to some questions concerning surfaces in \mathbb{R}^4 and maps into the quadric Q_2 raised by D. Hoffman and R. Osserman.

Let S be an oriented surface immersed in \mathbb{R}^4 . The Gauss map of S is the map G of S into G(2,4), the Grassmannian of oriented two-planes in \mathbb{R}^4 , given by $G(p) = T_p S$. G(2,4) can be identified with Q_2 , the complex quadric in $\mathbb{C}P^3$, and in turn Q_2 is biholomorphic to $\mathbb{C}P^1 \times \mathbb{C}P^1$. If we give $\mathbb{C}P^3$ the Fubini-Study metric of constant holomorphic sectional curvature 2, then the induced metric on Q_2 is given by

$$2|dw_1|^2/(1+|w_1|^2)^2+2|dw_2|^2/(1+|w_2|^2)^2$$
,

where (w_1, w_2) are coordinates on $\mathbb{C} \times \mathbb{C}$, viewed as local coordinates on $\mathbb{C}P^1 \times \mathbb{C}P^1$ [1]. The metric $2|dw|^2/(1+|w|^2)^2$ is the metric on \mathbb{C} induced by the map of \mathbb{C} onto $S^2(1/\sqrt{2}) \subset \mathbb{R}^3$ given by $w \mapsto \sigma^{-1}(\sqrt{2}w)$, where σ^{-1} is inverse stereographic projection (with the sphere sitting on the xy-plane). Thus, Q_2 is isometric to $S^2(1/\sqrt{2}) \times S^2(1/\sqrt{2})$. In particular, if z is a local conformal parameter on S, then any map G of S into Q_2 splits into a pair of maps $G(z) = (f_1(z), f_2(z))$, where $w_i = f_i(z)$ as above. Now define the following quantities on S for i = 1, 2:

$$F_{i} := \frac{f_{i\bar{z}}}{1 + |f_{i}|^{2}}, \quad T_{i}(z) = \left[\frac{(f_{i})_{z\bar{z}}}{(f_{i})_{z}} - \frac{2\bar{f}_{i}f_{iz}}{1 + |f_{i}|^{2}}\right]_{\bar{z}} \quad \text{where } f_{i\bar{z}} \neq 0$$

with the usual z and \bar{z} derivative notation. The following results are from [1, 2].

THEOREM A. For the Gauss map G of an oriented surface S immersed in \mathbb{R}^4 , write $G = (f_1(z), f_2(z))$ as above. Then we necessarily have

$$|F_1| \equiv |F_2|,$$

and

$$\operatorname{Im}\{T_1 + T_2\} \equiv 0.$$

THEOREM B. Let S_0 be a simply connected Riemann surface (here and subsequently), let $G = (f_1(z), f_2(z))$ be some map of S_0 into Q_2 , and define F_i and T_i as before, where z is a conformal parameter on S_0 .

(i) If $F_1 = F_2 \equiv 0$, then G is the Gauss map of a minimal surface in \mathbb{R}^4 , provided S_0 is not compact.

Received by the editors April 19, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 53A05; Secondary 53A10.

(ii) If F_1 , F_2 are never zero, then G is the Gauss map of a surface S in \mathbb{R}^4 given by a conformal immersion of S_0 if and only if

$$|F_1| \equiv |F_2|,$$

and

$$\operatorname{Im}\left\{T_{1}+T_{2}\right\}\equiv0.$$

Furthermore, in this case S is uniquely determined up to translation and homothety of \mathbb{R}^4 .

Let (1') denote the condition that F_1 , F_2 are never zero (i.e., $f_{1\bar{z}}$ and $f_{2\bar{z}}$ are never zero) and $|F_1| \equiv |F_2|$. A special class of maps which satisfy (2) are harmonic maps, i.e., those f(z)'s such that

$$L(f) := f_{z\bar{z}} - 2\bar{f}f_zf_{\bar{z}}/(1+|f|^2) = 0.$$

In particular, if

$$(3) L(f_i) \equiv 0, i = 1, 2,$$

then (2) is automatically satisfied. Condition (3) is simply that the map $G: S_0 \to Q_2$ is harmonic. A theorem of Ruh and Vilms [4] asserts that the Gauss map of a submanifold of \mathbf{R}^n is harmonic if and only if the submanifold has parallel mean curvature. Combining this with Theorem B we now have the following observation:

A map $G: S_0 \to Q_2$ is the Gauss map of a conformal immersion with parallel (nonzero) mean curvature in \mathbb{R}^4 if and only if (1') and (3) hold.

Finally, an interesting subclass of surfaces of parallel mean curvature in \mathbb{R}^4 are minimal surfaces in some $S^3(r)$. Hoffman and Osserman also prove the following

PROPOSITION. A map $G: S_0 \to Q_2$ is the Gauss map of a conformal minimal immersion of S_0 into some $S^3(r)$ (viewed as sitting in \mathbb{R}^4) if and only if (1) and (3) are satisfied, as well as the following

(4)
$$f_{1z}/f_{1z}^{-} = f_{2z}/f_{2z}^{-}.$$

In view of these results, the following questions present themselves [1, 2]: Given a map from S_0 into $S^2(1/\sqrt{2})$, represented locally by $f_1(z)$ as above, does there exist a map from S_0 into $S^2(1/\sqrt{2})$, represented by $f_2(z)$, such that the pair $(f_1(z), f_2(z))$ satisfies

Q1. (1') and (2)? Suppose f_1 satisfies $L(f_1) = 0$. Does there exist $f_2(z)$ such that the pair (f_1, f_2) satisfies

Q2. (1') and (3), or

Q3. (1'), (3) and (4)?

An affirmative answer to Q1 (Q2) would mean that the pair (f_1, f_2) is the Gauss map of a conformal immersion (with parallel nonzero mean curvature) of S_0 in \mathbb{R}^4 , while an affirmative answer to Q3 would mean that the pair (f_1, f_2) is the Gauss map of a conformal minimal immersion of S_0 into some $S^3(r)$ (viewed as sitting in \mathbb{R}^4).

We answer Q2 and Q3 affirmatively in Theorem C. While this provides an affirmative answer to Q1 under the special assumption of $(3) (\Rightarrow (2))$, we do not know the answer to Q1 in general.

THEOREM C. Given a map from S_0 , not conformally equivalent to S^2 , into $S^2(1/\sqrt{2})$, written as $f_1(z)$ as above, such that $f_{1\overline{z}}$ is never zero, and $L(f_1)=0$, there exists a one-parameter family of maps of S_0 into $S^2(1/\sqrt{2})$, written as $f_{\theta}(z)$, such that the pair (f_1, f_{θ}) satisfies (1) and (3). Furthermore, there is a unique θ_0 such that the pair (f_1, f_{θ_0}) also satisfies (4). If S_0 is conformally equivalent to S^2 , $f_2 = f_1$ is the only possibility for even (1) and (3).

REMARK. The idea of the proof is to regard f_1 as the Gauss map of a surface S of constant (nonzero) mean curvature in \mathbb{R}^3 . The f_{θ} 's are the Gauss maps of the associated family S_{θ} , $0 \le \theta \le 2\pi$, to S. It turns out that condition (4) is then satisfied exactly for the surface S_{π} :

PROOF OF THEOREM C. We regard $f_1(z)$ as the representation of a map of S_0 with $S^2(1)$ as follows: Let $\sigma(\sigma')$ be stereographic projection of $S^2(1/\sqrt{2})$ ($S^2(1)$) onto C, and consider the transformation $\mathbf{C} \stackrel{\phi}{\to} \mathbf{C}$ by

$$\phi(w) = \frac{1}{2} \left(\sigma' \left(\sqrt{2} \left(\sigma^{-1} \left(\sqrt{2} w \right) \right) \right) \right).$$

 ϕ is just the identity map on \mathbb{C} , so $\phi(f_1) = f_{1'}$. Replacing f_1 by $\tilde{f}_1 = \sqrt{2} (\sigma^{-1}(\sqrt{2}f_1))$ $\in S^2(1)$, and then representing \tilde{f}_1 by $\frac{1}{2}\sigma'(\tilde{f}_1)$, we see that we may regard f_1 as a map into $\mathbb{C}P^1$, with the metric $4|dw|^2/(1+|w|^2)^2$ of constant curvature 1. Thus it suffices to prove Theorem \mathbb{C} with $S^2(1/\sqrt{2})$ replaced by $S^2(1)$. Now the conditions $f_{1\overline{z}} \neq 0$, $L(f_1) = 0$ mean that f_1 is a harmonic, nowhere anticonformal map of S_0 into $S^2 = S^2(1)$. From Hoffman-Osserman [1] and Kenmotsu [3], this guarantees that f_1 is the Gauss map of a conformal immersion X of S_0 into \mathbb{R}^3 with constant nonzero mean curvature. If we specify that $X(S_0)$ have constant mean curvature 1, then this determines $\mathcal{S}_0 = X(S_0)$ up to translation in \mathbb{R}^3 . If S^0 is conformally equivalent to S^2 , then \mathcal{S}_0 is the standard unit sphere, and any f_2 : $S_0 \to S^2(1)$ satisfying (1) and (3) must come from the same X (up to translation of \mathbb{R}^3). For S_0 not conformally S^2 , in the (global) isothermal parameter z, the metric induced on S_0 is $4F_0|dz|^2$ [3], where we have relabelled f_1 as f_0 . Now consider the associate family \mathcal{S}_0 [5] to \mathcal{S}_0 (0 $\leq \theta < 2\pi$). Then the Gauss maps f_0 of \mathcal{S}_0 satisfy (3), since each \mathcal{S}_0 has constant mean curvature. Since the metric on S_0 inherited from \mathcal{S}_0 is given by

$$4|f_{\theta z}|^2/(1+|f_{\theta}|^2)^2|dz|^2$$

and since \mathscr{S}_{θ} is isometric to \mathscr{S}_{0} , we also have condition (1) satisfied for the pair (f_{0}, f_{θ}) . Let β^{θ} be the second fundamental form of \mathscr{S}_{θ} . Then from formula 5.3 of [3], we have

(5)
$$\frac{1}{F_{\theta}} \left\langle \frac{\beta_{11}^{\theta} - \beta_{22}^{\theta}}{2} - i\beta_{12}^{\theta} \right\rangle = \frac{f_{\theta z}}{f_{\theta z}^{z}}.$$

From this we see that condition (4), in the presence of (1), is equivalent to

(6)
$$\beta_{11}^0 - \beta_{22}^0 = \beta_{22}^{\theta} - \beta_{11}^{\theta}, \qquad \beta_{12}^0 = -\beta_{12}^{\theta}.$$

Finally, since

$$\beta_{11}^{\theta} = \cos \theta (\beta_{11}^{0} - F_{0}) + \sin \theta \beta_{12}^{0} + F_{0},$$

$$\beta_{22}^{\theta} = -\cos \theta (\beta_{11}^{0} - F_{0}) - \sin \theta \beta_{12}^{0} + F_{0},$$

$$\beta_{12}^{\theta} = \cos \theta \beta_{12}^{0} - \sin \theta (\beta_{11}^{0} - F_{0})$$

and $\beta_{11}^0+\beta_{22}^0=2F_0$ [5], we see that condition (4) (cf. (6)) is equivalent to $\theta=\pi$. Q.E.D.

REFERENCES

- 1. D. Hoffman and R. Osserman, The Gauss map of surfaces in Rⁿ, J. Differential Geom. 18 (1983).
- 2. _____, The Gauss map of surfaces in \mathbb{R}^3 and \mathbb{R}^4 (to appear).
- 3. K. Kenmotsu, Weierstrass formula for surfaces of prescribed mean curvature, Math. Ann. 245 (1979), 89-99
- 4. E. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569-573.
 - 5. B. Lawson, Complete minimal surfaces in S³, Ann. of Math. (2) 92 (1970), 335-374.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA, IOWA CITY, IOWA 52242