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ON SURFACES IN R*
WALTER SEAMAN

ABSTRACT. We provide answers (Theorem C) to some questions concerning surfaces
in R* and maps into the quadric Q, raised by D. Hoffman and R. Osserman.

Let S be an oriented surface immersed in R®. The Gauss map of S is the map G of
S into G(2, 4), the Grassmannian of oriented two-planes in R*, given by G(p) = T,S.
G(2,4) can be identified with Q,, the complex quadric in CP?, and in turn Q, is
biholomorhic to CP! X CP!. If we give CP? the Fubini-Study metric of constant
holomorphic sectional curvature 2, then the induced metric on Q, is given by

2laimy /(1 + i)+ 2l /(1 + o)’

where (w,, w,) are coordinates on C X C, viewed as local coordinates on CP! X CP!
[1]. The metric 2|dw|?/(1 + |w|?)? is the metric on C induced by the map of C onto
S$2(1/V2) c R® given by w — o ~1(¥2 w), where 0! is inverse stereographic projec-
tion (with the sphere sitting on the xy-plane). Thus, Q, is isometric to S*(1/ V2) x
$2(1/V2). In particular, if z is a local conformal parameter on S, then any map G of
S into Q, splits into a pair of maps G(z) = (f,(2), f,(z)), where w; = f,(z) as above.
Now define the following quantities on S for i = 1,2:

iz

F}:= 27 T‘l(z)=
1 +lfl

with the usual z and z derivative notation. The following results are from [1, 2].

(f).: 2/,
(f): 1 +17

] where f;; # 0

THEOREM A. For the Gauss map G of an oriented surface S immersed in R*, write
G = (f1(2), f,(2)) as above. Then we necessarily have

(1) |F| =IF),
and
(2) Im{T, + T,} =0.

THEOREM B. Let S, be a simply connected Riemann surface (here and subsequently),
let G = (f,(2), f,(2)) be some map of S, into Q,, and define F, and T, as before, where
z is a conformal parameter on S,,.

(i) If F, = F, = 0, then G is the Gauss map of a minimal surface in R*, provided S,
is not compact.
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(i) If F,, F, are never zero, then G is the Gauss map of a surface S in R* given by a
conformal immersion of S, if and only if

(1) |F,] =|Fy,
and
(2) Im{T, + T,} = 0.

Furthermore, in this case S is uniquely determined up to translation and homothety of
R*.

Let (1’) denote the condition that F,, F, are never zero (i.e., f,; and f,; are never
zero) and | F}| = |F,|. A special class of maps which satisfy (2) are harmonic maps,
i.e., those f(z)’s such that

L(f)= fiz = 27Lf:/(1+1) = 0.
In particular, if
(3) L(f)=0, i=1,2,

then (2) is automatically satisfied. Condition (3) is simply that the map G: S, — Q,
is harmonic. A theorem of Ruh and Vilms [4] asserts that the Gauss map of a
submanifold of R” is harmonic if and only if the submanifold has parallel mean
curvature. Combining this with Theorem B we now have the following observation:

A map G: §, = Q, is the Gauss map of a conformal immersion with parallel
(nonzero) mean curvature in R* if and only if (1) and (3) hold.

Finally, an interesting subclass of surfaces of parallel mean curvature in R* are
minimal surfaces in some S3(r). Hoffman and Osserman also prove the following

PROPOSITION. A map G: S, = Q, is the Gauss map of a conformal minimal
immersion of S, into some S*(r) (viewed as sitting in R*) if and only if (1) and (3) are
satisfied, as well as the following

(4) f/h: = hth

In view of these results, the following questions present themselves [1, 2]: Given a
map from S, into S2(1/ y2), represented locally by f1(2) as above, does there exist a
map from S, into S2(1/ y2), represented by f>(2), such that the pair (f,(z), f,(2))
satisfies

Q1. (1") and (2)? Suppose f; satisfies L(f;) = 0. Does there exist f,(z) such that
the pair ( f,, f,) satisfies

Q2. (1) and (3), or

Q3.(1'),(3) and (4)?

An affirmative answer to Q1 (Q2) would mean that the pair (f;, f,) is the Gauss
map of a conformal immersion (with parallel nonzero mean curvature) of S, in R®,
while an affirmative answer to Q3 would mean that the pair (f;, f,) is the Gauss
map of a conformal minimal immersion of S, into some S>3(r) (viewed as sitting in
R*).
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We answer Q2 and Q3 affirmatively in Theorem C. While this provides an
affirmative answer to Q1 under the special assumption of (3) (= (2)), we do not
know the answer to Q1 in general.

THEOREM C. Given a map from S, not conformally equivalent to S?, into S*(1/ V2),
written as f,(z) as above, such that fi; is never zero, and L(f,)= 0, there exists a
one-parameter family of maps of S, into S*(1/ V2), written as fo(2), such that the pair
(f1, fo) satisfies (1) and (3). Furthermore, there is a unique 0, such that the pair
(f1> fo,) also satisfies (4). If S, is conformally equivalent to S 2, f, =1, is the only
possibility for even (1) and (3).

REMARK. The idea of the proof is to regard f; as the Gauss map of a surface S of
constant (nonzero) mean curvature in R®. The f,’s are the Gauss maps of the
associated family Sy, 0 < 6 < 27, to S. It turns out that condition (4) is then
satisfied exactly for the surface S, :

PrOOF OF THEOREM C. We regard f,(z) as the representation of a map of S, with
S2(1) as follows: Let a(s”) be stereographic projection of S%(1/v2) (S%(1)) onto C,

and consider the transformation C i Cby
o(w) = 1(o'(VZ (o' (V2W)))).

¢ is just the identity map on C, so ¢(f,) = f,.. Replacing f, by f, = V2 (¢ }(V21,))
€ S$?%(1), and then representing f; by $6’( f;), we see that we may regard f, as a map
into CP!, with the metric 4|dw|2/(1 + |w|*)? of constant curvature 1. Thus it
suffices to prove Theorem C with S2(1/ V2 ) replaced by S?(1). Now the conditions
fiz# 0, L(f,) = 0 mean that f, is a harmonic, nowhere anticonformal map of S,
into $? = S$2(1). From Hoffman-Osserman [1] and Kenmotsu [3], this guarantees
that £, is the Gauss map of a conformal immersion X of S, into R® with constant
nonzero mean curvature. If we specify that X(S,) have constant mean curvature 1,
then this determines %, = X(S,) up to translation in R>. If S° is conformally
equivalent to S?, then %, is the standard unit sphere, and any f,: S, — S2(1)
satisfying (1) and (3) must come from the same X (up to translation of R®). For §,
not conformally S, in the (global) isothermal parameter z, the metric induced on S,
is 4F|dz|? [3], where we have relabelled f; as f,. Now consider the associate family
F, [5] to &%, (0 < 8 < 2ar). Then the Gauss maps fy of ¥ satisfy (3), since each &,
has constant mean curvature. Since the metric on S, inherited from % is given by

alfozl /(1 + 1) ez,

and since % is isometric to %, we also have condition (1) satisfied for the pair
(fo» fo)- Let B9 be the second fundamental form of %,. Then from formula 5.3 of [3],
we have

6 _ '}
(5) %{M—i {’2}=—"i.
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From this we see that condition (4), in the presence of (1), is equivalent to
(6) B{)I - Bzoz = Bz‘)z - pr .sz = —Bfr

Finally, since

B, = cos 8(BY, — Fy) + sin8BY, + F,
B3, —cosﬂ(B?l - Fo) - sin 4By, + Fy,
.3102 = Cos 0:3?2 - Sina(B?1 - Fo)

and B9 + B2 = 2F, [5], we see that condition (4) (cf. (6)) is equivalent to § = 7.
Q.ED.
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