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ON SURFACES IN R4

WALTER SEAMAN

Abstract. We provide answers (Theorem C) to some questions concerning surfaces

in R4 and maps into the quadric Q2 raised by D. Hoffman and R. Osserman.

Let S be an oriented surface immersed in R4. The Gauss map of S is the map G of

5 into G(2,4), the Grassmannian of oriented two-planes in R4, given by G(p) = TpS.

G(2,4) can be identified with Q2, the complex quadric in CP3, and in turn Q2 is

biholomorhic to CP1 X CP1. If we give CP3 the Fubini-Study metric of constant

holomorphic sectional curvature 2, then the induced metric on Q2 is given by

2|dw1|2/(l +K|2)   + 2|dw2|2/(l +k2|2) ,

where (wx, w2) are coordinates on C X C, viewed as local coordinates on CP1 X CP1

[1]. The metric 2\dw\2/(\ + |w|2)2 is the metric on C induced by the map of C onto

S2(l/ v¿ ) c R3 given by w *■» o~1(]/2 w), where a"1 is inverse stereographic projec-

tion (with the sphere sitting on the xv-plane). Thus, Q2 is isometric to S2(l/ y/2 ) X

52(1/ v2 )• In particular, if z is a local conformai parameter on S, then any map G of

S into Q2 splits into a pair of maps G(z) = (fx(z), f2(z)), where w, = f¡(z) as above.

Now define the following quantities on 5 for i = 1,2:

F,-=
íñ

1 +
-,    Tt(z) =

(Di   i+i/,r
where/,- # 0

with the usual z and z derivative notation. The following results are from [1, 2].

Theorem A. For the Gauss map G of an oriented surface S immersed in R4, write

G = (fx(z), f2(z)) as above. Then we necessarily have

(1) [fïl^tel.
and

(2) Im^ + T2} s 0.

Theorem B. Let S0 be a simply connected Riemann surface (here and subsequently),

let G = (fx(z), f2(z)) be some map of S0 into Q2, and define F, and T¡ as before, where

z is a conformai parameter on S0.

(i) // Fx = F2 = 0, then G is the Gauss map of a minimal surface in R4, provided SQ

is not compact.
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(ii) If Fx, F2 are never zero, then G is the Gauss map of a surface S in R4 given by a

conformai immersion of S0 if and only if

(i) ¡Fii^m
and

(2) IM7! + Ti) - °-

Furthermore, in this case S is uniquely determined up to translation and homothety of

R4

Let (1') denote the condition that Fx, F2 are never zero (i.e., fXz and f2z are never

zero) and \FX\ = \F2\. A special class of maps which satisfy (2) are harmonic maps,

i.e., those/(z)'s such that

!(/):- fzz-2ffzf-z/(l+\f\) = 0.

In particular, if

(3) L(f,) = Q,       i =1,2,

then (2) is automatically satisfied. Condition (3) is simply that the map G: S0 -» Q2

is harmonic. A theorem of Ruh and Vilms [4] asserts that the Gauss map of a

submanifold of R" is harmonic if and only if the submanifold has parallel mean

curvature. Combining this with Theorem B we now have the following observation:

A map G: S0 -* Q2 is the Gauss map of a conformai immersion with parallel

(nonzero) mean curvature in R4 if and only if (Y) and (3) hold.

Finally, an interesting subclass of surfaces of parallel mean curvature in R4 are

minimal surfaces in some 53(r). Hoffman and Osserman also prove the following

Proposition. A map G: S0 -* Q2 is the Gauss map of a conformai minimal

immersion of S0 into some S3(r) (viewed as sitting in R4) //and only if (1) and (3) are

satisfied, as well as the following

(4) fiJfil=hz/k-,.

In view of these results, the following questions present themselves [1, 2]: Given a

map from 50 into S2(\/ \/2 ), represented locally by/,(z) as above, does there exist a

map from S0 into S2(l/ J2), represented by f2(z), such that the pair (fx(z), f2(z))

satisfies

Ql. (!') and (2)? Suppose fx satisfies L(fx) = 0. Does there exist f2(z) such that

the pair ( /",, /", ) satisfies

Q2. (V) and (3), or

Q3.(V),(3) and(4)1

An affirmative answer to Ql (Q2) would mean that the pair (/,, f2) is the Gauss

map of a conformai immersion (with parallel nonzero mean curvature) of S0 in R4,

while an affirmative answer to Q3 would mean that the pair (fx,f2) is the Gauss

map of a conformai minimal immersion of S0 into some S3(r) (viewed as sitting in

R4).
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We answer Q2 and Q3 affirmatively in Theorem C. While this provides an

affirmative answer to Ql under the special assumption of (3) (=> (2)), we do not

know the answer to Ql in general.

Theorem C. Given a map from S0, not conformally equivalent to S2, into S2(l/ y2),

written as fx(z) as above, such that fXz is never zero, and L(fx) = 0, there exists a

one-parameter family of maps of S0 into S2(l/ -J2), written as fe(z), such that the pair

(fi-fe) satisfies (1) and (3). Furthermore, there is a unique 60 such that the pair

(/i> fe ) a^so satisfies (4). If S0 is conformally equivalent to S2, f2 = /, is the only

possibility for even (1) and (3).

Remark. The idea of the proof is to regard fx as the Gauss map of a surface 5 of

constant (nonzero) mean curvature in R3. The /9's are the Gauss maps of the

associated family Se, 0 < 6 < 2m, to S. It turns out that condition (4) is then

satisfied exactly for the surface S„:

Proof of Theorem C. We regard fx(z) as the representation of a map of S0 with

S2(l) as follows: Let a(o') be Stereographic projection of 52(1/ y2) (S2(l)) onto C,

and consider the transformation C -» C by

<i,(vv)=i(a'(v/2(a-1(v^w)))).

d> is just the identity map on C, so <H/i) = fv- Replacing/! hy fx = \¡2(o~x(y/2fx))

G S2(l), and then representing/! by 2a'(/iX we see that we may regard/, as a map

into CP1, with the metric 4|dw|2/(l + |w|2)2 of constant curvature 1. Thus it

suffices to prove Theorem C with S2(\/ ¿2) replaced by 52(1). Now the conditions

f1.¥=0,L(fx) = 0 mean that fx is a harmonic, nowhere anticonformal map of S0

into S2 = S2(l). From Hoffman-Osserman [1] and Kenmotsu [3], this guarantees

that /i is the Gauss map of a conformai immersion X of S0 into R3 with constant

nonzero mean curvature. If we specify that X(S0) have constant mean curvature 1,

then this determines Sf0 = X(S0) up to translation in R3. If S° is conformally

equivalent to S2, then yo is the standard unit sphere, and any f2: S0 -* S2(l)

satisfying (1) and (3) must come from the same X (up to translation of R3). For S0

not conformally S2, in the (global) isothermal parameter z, the metric induced on S0

is 4F0|dz|2 [3], where we have relabelled fx as/0. Now consider the associate family

Sfe [5] to y0 (0 < 6 < 2n). Then the Gauss maps fe of Sr°e satisfy (3), since each SP0

has constant mean curvature. Since the metric on S0 inherited from £fe is given by

4|/9-|2/(l+l//)Vl,

and since £fe is isometric to 6^0, we also have condition (1) satisfied for the pair

(/o> fe)- Let ße be the second fundamental form of Sfe. Then from formula 5.3 of [3],

we have

(5) '|iLÄ.Äl.i.
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From this we see that condition (4), in the presence of (1), is equivalent to

(6) /3i°i - &°2 = #2 -/C       ß?2=-ßen-

Finally, since

/8f! = cosö(yS10!-P0) + sin^!02 + F0,

ße22 = -cos0(p\°! - F0) - sin0/?i°2 + F0,

ßeX2 = Cos0ß?2-Sm8(ß°x-F0)

and ßxx + ß22 = 2F0 [5], we see that condition (4) (cf. (6)) is equivalent to 6 = tt.

Q.E.D.
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