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ON SUPPORTLESS CONVEX SETS

J. M. BORWEIN1 AND D. W. TINGLEY

Abstract. We give some general constructions of supportless convex subsets of

normed spaces and pose a number of open questions.

1. Introduction. In 1958 Klee [5, 15, 16] gave an example of an incomplete linear

subspace of /2(N) which contains a closed bounded (actually precompact) convex

subset with no support points. He also asked whether such a subset could be found

in a Banach space. Subsequently, Bishop and Phelps [1] showed that in a Banach

space the support functionals of such a set were always norm dense in the dual

space. This is the "dual" Bishop-Phelps theorem. In [2] they extended this to show

that the support points were themselves norm dense in the boundary of the set—the

Bishop-Phelps theorem. They also showed in [2] that the dual Bishop-Phelps theorem

actually characterizes Banach spaces amongst normed spaces. In 1965 Bronsted and

Rockafellar [6] published an elegant convex generalization (in terms of epsilon

subgradients) of both Bishop-Phelps theorems simultaneously. In 1969 Peck [19],

while studying more general support properties of convex subsets of topological

vector spaces, showed that the Bishop-Phelps theorem failed in certain Fréchet

spaces. In 1974, Ekeland [9] produced a far-ranging nonconvex extension of the

Bishop-Phelps and Bronsted-Rockafellar results to metric spaces. This result is now

called " Ekeland's variational principle".

Ekeland [9, 10], Sullivan [22], and Tuy [25] have surveyed the impressive variety of

applications that the variational principle has already had. Sullivan [21] also ob-

served that Ekeland's principle actually characterizes completeness of a metric space.

When one specializes his construction to a normed setting, the function involved

becomes continuous and convex and shows that the Bronsted-Rockafellar theorem

(for continuous convex functions) characterizes Banach spaces.

The recent development of nonsmooth analysis [7] has substantially increased the

interest in tangency properties of convex and nonconvex sets. Support properties

play a critical role here. For example, if a normed space contains a supportless

closed bounded convex set C, then two disjoint copies of C produce an example of a

closed bounded disconnected set A whose tangent cone (in any of a number of

definitions) at each point of A is the whole space [3]. In such a setting much of the
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more delicate theory of convex and nonsmooth analysis falls apart. For this and

other reasons one wishes to know which normed spaces contain supportless sets. In

the next two sections we sketch some positive results and indicate a series of open

questions regarding the existence of supportless sets. Loosely speaking, we are

searching for a converse to the Bishop-Phelps theorem.

2. Supportless convex sets. A subset A of a topological vector space will be called

supportless if no continuous linear functional achieves its bounds on A. Our main

conjecture is that a normed space X contains a closed bounded convex supportless

set if and only if X is incomplete. This might be compared with James' theorem [14],

which shows that there is a continuous linear functional which fails to support the

unit ball if and only if X is nonreflexive. Our evidence for the conjecture is that we

can construct supportless sets in a wide variety of types of incomplete normed

spaces. Peck's technique in [19], which is to inductively apply James' theorem, seems,

intrinsically, not to apply in a normed setting. The only remaining techniques seem

to devolve to generalizations of Klee's original example [15]. An abstract form of this

example is as follows.

Theorem 1. Let E be a Banach space and let T: l2(S) -* E be a bounded linear

mapping such that T is infective with proper norm-dense range. Suppose that M c l2(S)

is a dense subspace with

(1) MHR(T*) = 0.

ThenCc E, defined by

C:=T(B),       B:= {xe l2(S) | ||jc||2 < l},

is a symmetric convex closed bounded subset of E (which is precompact when T is

compact) such that (i) C has no support points in T(M), and (ii) C n T(M) is

supportless in T(M).

Proof. Suppose 0*$e (T(M))* = E*, and suppose that $ supports C n

T(M) at c:= T(b) e T(M). Since C n T(M) = T(B n M) and T is injective, it

follows that b e B, and so

0 = sup(4», CD T(M) - T(b)) = sup(P*($), B n M - b)

= sup<7*(<í>), B - b).

Thus,

||r*(*)||« <r*(*),ft> <||r*(*)||||fe||<||r*(*)||,

and we must have

T*(<5>) = fee M n R(T*) = 0.

Since T* is injective, this is impossible. This establishes both (i) and (ii).    D

We will say that a space is unsupportable if it contains a closed bounded convex

supportless subset. Otherwise, we say the space is supportable. This leads to the

following corollaries.
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Corollary 1. Every separable Banach space E contains uncountably many unsup-

portable dense subspaces, including continuous operator ranges.

Proof. Let K¡: /2(N) -» /2(N) (i = 1,2) be injective continuous linear operators

with dense disjoint ranges: R(KX) n R(K2) = 0 [12, p. 273]. Let J: /2(N) -> E be

injective, continuous, and linear with dense range [13]. Then we apply Theorem 1

with T:= JK* and M:= K2(N), whereN is any dense subspace of /2(N). Now Tis

injective with dense range and

R(T*) DM ç R(KX) n R(K2) = 0,

and so T(M) is unsupportable. Since T(M) = JKX*K2(N) and there are uncount-

ably many choices for N, there are uncountably many choices for T(M). Letting

N := /2(N) produces an operator range.   D

Klee's original idea was essentially to use Kx(xn) := xn/2" on /2(N).

Corollary 2. Every countable dimension normed space contains a precompact

closed convex supportless set and, therefore, is unsupportable.

Proof. Let P be the space and let E be its completion. Let K: /2(N) -» /2(N) be

an injective compact linear mapping, and let M be dense and countable dimension

in /2(N) with R(K*) n M = 0. (Again this is possible by [12, p. 273].) A Markuse-

vich basis argument [13] allows one to produce a compact injective linear mapping J:

/2(N) -» E with J(K(M)) = P, since both P and K(M) are dense and countable

dimension. Since T:= JK and M satisfy the hypotheses of Theorem 1, it follows

that P = T( M ) is unsupportable as required.   D

Example 1. Corollary 2 shows that many explicit spaces fail to be supportable.

These include (i) the polynomials on a bounded interval in either supremum or

integral norm and (ii) the span of any Schauder basis in a Banach space with basis.

In particular, this includes the span of the standard unit vectors in lp(N) (1 < p < oo).

D

Example 2. We may apply Theorem 1 with S of arbitrary cardinality. In

particular, since the / sum (1 < p < oo) of disjoint dense operator ranges produces

such ranges, one can find injective operators L, mapping lp(S) to l2(S) (i = 1,2)

such that R(LX) D R(L2) = 0 while each range is dense. Theorem 1, with p = 2,

now shows that R(L*LX) is unsupportable. One can argue similarly in lp(S)

(1 < p < oo ).    D

Example 3. If (1) is replaced by

(2) dim[Afn R(T*)\ = n G N,

the proof of the theorem shows that one can construct closed bounded convex sets

whose support points form a nonempty set of dimension n. In particular, such a set

fails to be the closed convex hull of its support points.    D

All the subspaces constructed via Theorem 1 will have uncountable codimension

in E. This follows because T(B) has too many support points. The next construction

remedies this defect. Recall first that a space is barrelled if every closed bounded

convex set with nonempty core has nonempty interior.
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Theorem 2. Every reflexive separable Banach space E contains a dense unsupport-

able subspace which has countable codimension and is therefore barrelled.

Proof. Let T: E* -» c0(N) be injective, continuous, and linear with proper dense

range [13]. Let P:= sp(e„) in /,(N) and let M be a dense subspace of /i(N) with

M n P = 0, as can be guaranteed by a diagonal extraction process. Extend T*(M)

to a supplement, N, for T*(P). Now consider C-= T*(B)C\N in N, where

B:= [x g ^(NJIIIjcII, < 1}. Since B is w*-compact, so is T*(B). Hence, 7*(5) is

closed in E and C is closed in A/. Argue as in Theorem 1. If 0 + 0 supports C at

r*(fe) = c in N, then since 7*(fi n A/) c C n N we have

0 = sup<$, c n A/ - c> > sup<$, P*(fi n M) - T*(b))

= sup(T((i)), B n M - b) = sup(T(<b), B - b).

Thus, ||r$|| = (T($), b) = \\T($)\\ ||Z>||, and 0 + b g /,(N) must support the ball in

c0(N) of radius \\T(<S>)\\ at T(Q) f 0. Hence, ft e P and c e 7*(P) n A/ = 0. Thus,

fe = 0, which is a contradiction. Clearly, Af is countable codimension and necessarily

barrelled [18].    D

Example 4. (a) In Theorem 2, T*(B) provides an example of a convex set of a

Banach space whose support points are countable dimensional. By the Bishop-Phelps

theorem this is the smallest dimension one can achieve in an infinite-dimensional

Banach space.

(b) Using the techniques of Theorem 2, dense unsupportable subspaces exist in

any reflexive space which admits a proper dense injection into c0(S).

(c) A concrete version of Theorem 2 is provided by considering the inclusion of

various spaces in c0(S). Then T*(B) is replaced by the lx(S) unit ball Bx, viewed,

say, in E := lp(S) (1 < p < oo) or in E := c0(S). A direct argument shows that if N

is a subspace of lx(S) such that N n V = 0, where V is the span of the unit vectors,

then Bx n F is unsupportable in V and V is an unsupportable dense subspace of E.

I-,

A strong form of the Klee-Wilanski conjecture [17, 23] implies that every count-

able codimension subspace of a Banach space is Baire (second category in itself).

But, recently, De Renya [20] has shown that there do, however, exist dense

hyperplanes of first category in every separable Banach space of infinite dimension.

Thus, the same holds in every W.C.G. space of infinite dimension. Nonetheless, we

can show that the following theorem holds. The proof is a little tedious so we omit it.

Theorem 3. Every reflexive separable Banach space contains a dense countable

codimension unsupportable Baire subspace.

We complete this section by giving the standard example [14] which shows that

any supportless normed space will possess a proper lower semicontinuous convex

function with no subgradients. Such a function must, of course, be nowhere

continuous.
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Example 5. Let C be a closed bounded convex subset of a normed space E and let

0 # x0 g E. Definef(x):= min{t g R|jc + tx0 g C}. Then/is lower semicontinu-

ous and convex, and since / has no global minimum, any subgradient for / at x is

nonzero. Letting c := x + f(x)x0 said noting that for any y g C, f(y - f(x)x0) <

f(x), if x* is a subgradient of /at x, then x*( v- - c) < /( v- - /(x)x0) - f(x) < 0.

Thus, .x*(.y) < x*(c) for all y g C, so a:* is a nonzero support for C at c.    D

3. Open questions.

1. Is every incomplete normed space unsupportablel

From the previous results it would seem that, if not, one can ask the following:

2. Is there a supportable dense hyperplane (or finite codimension subspace) of a

Banach spacel

Closely related, but possibly distinct, is

3. Must the support points of a closed convex subset C of a Banach space meet every

hyperplane (or finite codimension affine subspace) which intersects the boundary of Cl

Indeed, it is shown in [2] that the answer to 3 is positive for closed finite-codimen-

sion affine subspaces. Also, one can show that in a reflexive space the support points

of a closed bounded convex set are weakly connected.

4. If E is supportable does every closed bounded convex subset C of E have its support

points dense in the boundary of Cl

Dually, one can ask:

5. // every closed bounded convex subset of E has a support functional, must the

support functionals actually be dense in the duall

By the converse to the dual Bishop-Phelps theorem, this is equivalent to 1.

More limited questions include:

6. Does every Banach space possess a dense unsupportable subspacel Does /^(N)?

7. Does every Banach space possess a closed bounded symmetric convex set with

empty interior and with zero a nonsupport pointl

It is a nontrivial fact that such a subset of lx(S) cannot be weak-star closed [4].

In light of our constructions one is led to ask:

8. Does every Banach space admit essentially disjoint dense operator rangesl Does

UN)?
Recall that a Banach space E is W.C.G. (weakly compactly generated) if it admits

a weakly compact densely generating set. Such spaces admit injections from E and

E* into c0(S). Moreover, E is W.C.G. if and only if one can find a reflexive space R

and a dense linear injection T of R into E [8]. Since such dense injections played a

central role in Theorems 1 and 2, it makes sense to specialize the previous questions

to a W.C.G. or reflexive setting.

Given our examples, we ask:

9. If E is supportable, does every proper convex lower semicontinuous function have a

nonempty (or densely defined) subgradient setl

In [23] Treiman has shown that, in a Banach space, the (Clarke) tangent cone of a

closed set contains the topological limit inferior of the (Bouligand) contingent cones

nearby. One can show that this result fails in any unsupportable space.

10. Does Treiman's theorem characterize Banach spacel
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