A REGULAR COUNTEREXAMPLE TO THE γ-SPACE CONJECTURE

RALPH FOX AND JACOB KOFNER

ABSTRACT. This paper presents a completely regular counterexample to the conjecture that every γ -space is quasi-metrizable. Junnila has shown that developable γ -spaces are quasi-metrizable; this example shows that "developable" cannot be replaced by "quasi-developable". In the process we provide a method for constructing non-n-pretransitive spaces.

1. Introduction. The γ -space conjecture is the conjecture that every γ -space is quasi-metrizable. This conjecture has been proven for various classes of spaces, among them spaces with orthobases, developable spaces, and suborderable spaces [G-K2; J2; B-K1]. In [F] it is shown how to construct a counterexample \tilde{X} to the γ -space conjecture from a γ -space X having a neighbournet U with the property that U^k is not a normal neighbournet for any $k \in \mathbb{N}$ (such a space X may be obtained by taking the topological sum of a sequence of γ -spaces X_n , where X_n is not n-pretransitive). However, even if X is completely regular, \tilde{X} need not be regular at all. A sufficient condition for \tilde{X} to be completely regular is that X be completely regular and that U^k be a clopen neighbournet for every $k \in \mathbb{N}$.

We present here a construction which begins with a quasi-metrizable space Y of cardinality at most \mathbf{c} which is not n^+ -pretransitive, and yields another quasi-metrizable space \hat{Y} of cardinality \mathbf{c} that is not $(n+1)^+$ -pretransitive. If U is a neighbournet on Y such that U^{n+} is not normal, then this construction yields a neighbournet \hat{U} on \hat{Y} such that $\hat{U}^{(n+1)+}$ is not normal (see Lemma 1 below). This construction will allow us to inductively generate a sequence of spaces $X_n = \hat{X}_{n-1}$ with neighbournets $U_n = \hat{U}_{n-1}$ such that U_n^{n+} is not normal. If we take X to be the topological sum $X = \bigcup_{n=0}^{\infty} X_n$ and $U = \bigcup_{n=0}^{\infty} U_n$, we may then apply [F] to construct a γ -space \tilde{X} which is not quasi-metrizable.

By starting from a suitable space X_0 , we can inductively guarantee that X_n will be completely regular and that U_n^k will be clopen for every $k \in \mathbb{N}$ (see Lemma 3 below). In this case, the counterexample \tilde{X} will be completely regular, as intended.

2. Terminology. A quasi-metric is a generalized metric d satisfying the triangle inequality $d(x, z) \le d(x, y) + d(y, z)$ but not necessarily the symmetry axiom d(x, y) = d(y, x) [N; W]. A space X is said to be quasi-metrizable if it has a

Received by the editors May 9, 1983 and, in revised form, July 16, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54E15; Secondary 54G20, 54D15, 54E30.

Key words and phrases. Quasi-metric, γ -space, n-pretransitive space, normal neighbournet, quasi-devel opable, scattered space.

compatible quasi-metric d—i.e. at each point $x \in X$ the sets $B_d(x; \varepsilon) = \{ y : d(x, y) < \varepsilon \}$, for $\varepsilon > 0$, form a neighbourhood base.

We will use Junnila's neighbournet notation [J1]. A neighbournet on a space X is a binary relation V such that V[x] is a neighbourhood of x for every $x \in X$. A neighbournet V is called open, closed or clopen if every V[x] is open, closed or clopen, respectively. A sequence $\langle V_n : n \in \mathbb{N} \rangle$ of neighbournets is called basic if at each point $x \in X$ the sets $V_n[x]$, for $n \in \mathbb{N}$, form a neighbourhood base; and normal if $V_{n+1}^2 \subseteq V_n$ for each n. A neighbournet is said to be normal if it is a member of a normal sequence of neighbournets.

With this terminology, a T_1 space is quasi-metrizable if and only if it has a normal basic sequence of neighbournets [**R**; **J1**]. Similarly, a T_1 space is a γ -space if and only it has a sequence $\langle V_n : n \in \mathbb{N} \rangle$ of neighbournets such that the sequence $\langle V_n^2 : n \in \mathbb{N} \rangle$ is basic [**H**; **LF**; **J1**]. Clearly every quasi-metrizable space is a γ -space.

If U is a binary relation on a space X we define a new relation U^+ on X by $U^+[x] = \bigcap \{U[G]: G \text{ is a neighbourhood of } x\}$. If U is a neighbournet then $U^n \subseteq (U^n)^+ \subseteq U^{n+1}$ for each nonnegative integer n [K1]. We will write U^{n+1} for $(U^n)^+$.

A space X is called *n*-pretransitive $(n^+$ -pretransitive) if whenever U is a neighbournet on X then $U^n(U^{n+})$ is a normal neighbournet [FL, p. 191, §6.21; cf. also K1]. The n^+ -pretransitivity property lies strictly between n-pretransitivity and (n+1)-pretransitivity. Since $U^0[x] = \{x\}$, observe that a space is 0-pretransitive $(0^+$ -pretransitive) if and only if it is discrete (the arbitrary intersection of open sets is open).

The importance of n- and n^+ -pretransitivity is that an n- or n^+ -pretransitive γ -space is quasi-metrizable [FL, p. 165, §7.19], and that almost all partial solutions to the γ -space conjecture have implicitly used this property: [G; J2; K1; K2] have all shown that the spaces concerned were 2- or 2^+ -pretransitive.

3. The construction of \hat{Y} and \hat{U} . Let Y be a quasi-metrizable space and $\langle V_n : n \in \mathbb{N} \rangle$ a normal basic sequence for Y. The structure of \hat{Y} is as follows.

The points of \hat{Y} are the points of $Y \times \mathbb{R}$. We presume that \mathbb{R} is partitioned into sets A and B.

For each $b \in B$ we declare $Y \times \{b\}$ to be a clopen subspace of \hat{Y} canonically homeomorphic to Y. If $\langle y, b \rangle \in Y \times \{b\}$ we define $\hat{V}_n[\langle y, b \rangle] = V_n[y] \times \{b\}$.

We presume that Z is a chosen subset of $Y \times A$; and for each $\langle x, a \rangle \in Z$ that S(x, a) is a chosen subset of $Y \times B$. We define the basic neighbourhoods of $\langle x, a \rangle \in Z$ to be

$$\hat{V}_n[\langle x, a \rangle] = \{\langle x, a \rangle\} \cup \bigcup \{V_n[y] \times \{b\} : \langle y, b \rangle \in S(x, a) \text{ and } |b - a| < 2^{-n} \}.$$

All points $\langle x, a \rangle$ in $X \times A$ which are not in Z are isolated; for these points we define $\hat{V}_n[\langle x, a \rangle] = \{\langle x, a \rangle\}.$

The structure of \hat{Y} as outlined above does not by itself guarantee that \hat{Y} will be Hausdorff, even if Y is. However, \hat{Y} will be T_1 , and so the Hausdorff property will be guaranteed if \hat{Y} is regular. It is not difficult to show that $\langle \hat{V}_n : n \in \mathbb{N} \rangle$ is a normal basic sequence for \hat{Y} ; and hence \hat{Y} is quasi-metrizable.

The structure of \hat{U} is as follows. We presume that A is further partitioned into sets A_p ($p \in \mathbb{N}$), and that Z_p denotes the set of all points $\langle x, a \rangle \in Z$ with $a \in A_p$. Define \hat{U} by

$$\begin{split} \hat{U}\big[\langle x,b\rangle\big] &= U\big[x\big] \times \big\{b\big\} & \text{if } b \in B; \\ \hat{U}\big[\langle x,a\rangle\big] &= \hat{V}_p\big[\langle x,a\rangle\big] & \text{if } \langle x,a\rangle \in Z_p, p \in \mathbf{N}; \\ \hat{U}\big[\langle x,a\rangle\big] &= \big\{\langle x,a\rangle\big\} & \text{otherwise.} \end{split}$$

Observe that if $\langle x, a \rangle \in Z$, then

$$\hat{U}^{n+}[\langle x, a \rangle] = \hat{U}^{n}[\langle x, a \rangle] \cup \bigcap_{k=1}^{\infty} \bigcup \{U^{n} \circ V_{k}[y] \times \{b\} : \langle y, b \rangle \in S(x, a)$$

$$\text{and } |b - a| < 2^{-k}\}$$

$$= \hat{U}^{n}[\langle x, a \rangle].$$

Note that the construction of \hat{Y} and \hat{U} depends on the choices made of $A = \bigcup_{p=1}^{\infty} A_p$, B, Z, and S(x, a) for each $\langle x, a \rangle \in Z$. We will elaborate later on how these choices are to be made. The lemmas below discuss the properties required of \hat{Y} and \hat{U} .

LEMMA 1. Suppose that U^{n+} is not a normal neighbournet on Y. If \hat{Y} is constructed so that

- (I) B is a dense Baire subset of R;
- (II) if E is a subset of $Y \times B$, and the canonical projection of E onto B is somewhere dense in **R**, then for every $p \in \mathbb{N}$ there is a point $\langle x, a \rangle \in Z_p$ such that $\langle x, a \rangle \in \operatorname{cl}(E \cap S(x, a))$; and
- (III) for each $\langle x, a \rangle \in Z$ and each $b \in B$ there is at most one point of S(x, a) in $Y \times \{b\}$;

then $\hat{U}^{(n+1)+}$ will not be a normal neighbournet on \hat{Y} .

PROOF. Let W be a normal neighbournet on \hat{Y} . To show that $\hat{U}^{(n+1)+}$ is not normal, we will show that $W^2 \not\subset \hat{U}^{(n+1)+}$.

Because U^{n+} is not normal, we may find for each $b \in B$ a point $y_b \in Y$ such that $W[\langle y_b, b \rangle] \nsubseteq U^{n+}[y_b] \times \{b\}$. Let G_b be a neighbourhood of y_b in Y such that $W[\langle y_b, b \rangle] \nsubseteq U^n[G_b] \times \{b\}$.

By (I), we may find a fixed $p \in \mathbb{N}$ and a subset D of B which is somewhere dense in \mathbb{R} such that $V_p[y_b] \subseteq G_b$ for all $b \in D$.

By (II), there exists a point $\langle x, a \rangle \in Z_p$ such that $\langle x, a \rangle \in \text{cl}(\{\langle y_b, b \rangle : b \in D\})$ $\cap S(x, a)$. Note that

$$\hat{U}^{(n+1)+}[\langle x, a \rangle] = \hat{U}^{n+1}[\langle x, a \rangle] = \hat{U}^{n} \circ \hat{V}_{p}[\langle x, a \rangle]
= \{\langle x, a \rangle\} \cup \bigcup \{U^{n} \circ V_{p}[y] \times \{b\} : \langle y, b \rangle \in S(x, a) \text{ and } |b - a| < 2^{-p} \}.$$

Choose some $\langle y_b, b \rangle \in W[\langle x, a \rangle] \cap S(x, a)$ so that $b \in D$. Then $U^n \circ V_p[y_b] \subseteq U^n[G_b]$ and hence we may find some point $\langle z, b \rangle \in W[\langle y_b, b \rangle] \setminus U^n \circ V_p[y_b] \times \{b\}$. Thus $\langle z, b \rangle \in W^2[\langle x, a \rangle]$ and, by (III), $\langle z, b \rangle \notin \hat{U}^{n+1}[\langle x, a \rangle] = \hat{U}^{(n+1)+}[\langle x, a \rangle]$, as required.

PROPOSITION 2. Suppose $\langle x, a \rangle \in \mathbb{Z}$ has a neighbourhood $\hat{G} = \{\langle x, a \rangle\} \cup \bigcup_{i=1}^{\infty} G_i \times \{b_i\}$, where the G_i are clopen in Y and the b_i converge in \mathbb{R} to a. If $\langle x, a \rangle$ is the only point of \mathbb{Z} in $Y \times \{a\}$, then \hat{G} is clopen in \hat{Y} .

LEMMA 3. Suppose (a) each V_n is a clopen neighbournet on Y; (b) U^k is a clopen neighbournet for each $k \in \mathbb{N}$; and (c) $U^k \circ V_n$ is a clopen neighbournet for each k, $n \in \mathbb{N}$. If \hat{Y} is constructed so that

(IV) for each $a \in A$ there is at most one point of Z in $Y \times \{a\}$; and

(V) for each $\langle x, a \rangle \in Z$, S(x, a) is a sequence $\{\langle y_i, b_i \rangle : i \in \mathbb{N}\}$ where the b_i converge in **R** to a;

then (à) each \hat{V}_n is a clopen neighbournet on \hat{Y} ; (b) \hat{U}^k is a clopen neighbournet for each $k \in \mathbb{N}$; and (c) $\hat{U}^k \circ \hat{V}_n$ is a clopen neighbournet for each $k, n \in \mathbb{N}$.

PROOF. It will suffice to show for each $\langle x, a \rangle \in Z$ that $\hat{V}_n[\langle x, a \rangle]$, $\hat{U}^k[\langle x, a \rangle]$ and $\hat{U}^k \circ \hat{V}_n[\langle x, a \rangle]$ are clopen. Suppose $\langle x, a \rangle \in Z_p$. By (V), let $S(x, a) = \{\langle y_i, b_i \rangle : i \in \mathbb{N}\}$. Then

$$\begin{split} \hat{V}_n[\langle x, a \rangle] &= \{\langle x, a \rangle\} \cup \bigcup \{V_n[y_i] \times \{b_i\} \colon |b_i - a| < 2^{-n}\}, \\ \hat{U}^k[\langle x, a \rangle] &= \{\langle x, a \rangle\} \cup \bigcup \{U^{k-1} \circ V_p[y_i] \times \{b_i\} \colon |b_i - a| < 2^{-p}\}, \\ \hat{U}^k \circ \hat{V}_n[\langle x, a \rangle] &= \{\langle x, a \rangle\} \cup \bigcup \{U^k \circ V_n[y_i] \times \{b_i\} \colon |b_i - a| < 2^{-n}\} \\ &\cup \bigcup \{U^{k-1} \circ V_p[y_i] \times \{b_i\} \colon |b_j - a| < 2^{-p}\}. \end{split}$$

The required result now follows from Proposition 2, using (IV) and the assumptions (a) and (c). (Note that if k-1=0 then $U^{k-1} \circ V_p = V_p$, and so we would use (a) instead of (c) to guarantee that $U^{k-1} \circ V_p[y]$ was clopen.)

Now let us show that conditions (I) through (V) from Lemmas 1 and 3 may be met by suitably constructing \hat{Y} from a space Y of cardinality at most c.

First, we may partition \mathbf{R} into sets A and B, where A has cardinality \mathbf{c} on every open interval of \mathbf{R} and B is dense and Baire in \mathbf{R} .

If the cardinality of Y is no more than \mathbf{c} , there will also be no more than \mathbf{c} countable subsets E of $Y \times B$. Then by a straightforward transfinite induction, choose for each countable $E \subseteq Y \times B$ whose canonical projection onto B is dense in some interval (c_1, c_2) in \mathbf{R} and for each $p \in \mathbf{N}$, a distinct real number $a_{Ep} \in A \cap (c_1, c_2)$. Choose an arbitrary $x_{Ep} \in Y$ and let $S(x_{Ep}, a_{Ep})$ be any sequence of points $\langle y_i, b_i \rangle$ in E where the b_i are distinct and converge in \mathbf{R} to a_{Ep} .

Let Z consist of all points $\langle x_{Ep}, a_{Ep} \rangle$; and partition A into sets A_p ($p \in \mathbb{N}$) so that $a_{Ep} \in A_p$. Then conditions (I) through (V) are met (note that it is sufficient to prove (II) for countable sets E).

4. The counterexample. To complete the construction of the counterexample \tilde{X} , all that remains to be done is to provide a suitable space X_0 to start off the induction. For this purpose we will choose the convergent sequence space $\{2^{-k}: k \in \mathbb{N}\} \cup \{0\}$. Observe that X_0 is not 0^+ -pretransitive, and in fact U_0^{0+} will not be a normal neighbournet no matter what U_0 is. To satisfy the inductive assumptions (a), (b) and (c) of Lemma 3 we may define the neighbournet U_0 and the normal basic sequence $\langle V_n: n \in \mathbb{N} \rangle$ so that $U_0[x] = X_0$ and $V_n[2^{-k}] = \{2^{-k}\}$; $V_n[0] = \{2^{-k}: k > n\} \cup \{0\}$.

The counterexample \tilde{X} thereby produced will have the following properties. Note that the construction of \tilde{Y} from Y and the construction of \tilde{X} from X both preserve scatteredness, and that both increase the Cantor-Bendixson rank of the space by 1. Therefore \tilde{X} will be scattered, and the Cantor-Bendixson rank of \tilde{X} will be $\omega+1$. Consequently, \tilde{X} will be transitive (by transfinite induction and [FL, 6.16 and 6.17]), hereditarily weakly θ -refinable, and quasi-developable. Junnila has shown in [J2] that developable γ -spaces are quasi-metrizable; this demonstrates that developable cannot be weakened to quasi-developable.

We remark in passing that, with a modified construction of \hat{Y} , a counterexample \tilde{X} can be constructed which has the above properties and which is in addition submetrizable—that is, it has normal G_{δ} -diagonal sequence.

Finally, we observe that the construction given in [F] and used here cannot produce a normal counterexample to the γ -space conjecture. In particular, if X is any T_1 space containing at least 2 points then \tilde{X} will not be normal. For example, if X is the 2-point discrete space $\{0,1\}$ then \tilde{X} will consist of levels 1 through ω inclusive of a Cantor tree with the tree topology, a nonnormal space. To see this for a larger space X, consider a 2-point subset of X and the Cantor tree it generates in \tilde{X} . This raises the question: Are *normal* γ -spaces quasi-metrizable?

ADDED IN PROOF. The answer to the last question is no; there exists a paracompact counterexample.

REFERENCES

- [B] H. R. Bennett, Quasi-metrizability and the γ-space property in certain generalized ordered spaces, Topology Proc. 4 (1979), 1–12; MR 81m: 54063.
 - [FL] P. Fletcher and W. F. Lindgren, Quasi-uniform spaces, Dekker, New York, 1982.
- [F] R. Fox, Solution of the γ -space problem, Proc. Amer. Math. Soc. 85 (1982), 606–608; MR 83h: 54035.
 - [G] G. Gruenhage, A note on quasi-metrizability, Canad. J. Math. 29 (1977), 360-366; MR 55 #9040.
- [H] R. E. Hodel, Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972), 253–263; MR 45 # 2657.
 - [J1] H. Junnila, Neighbornets, Pacific J. Math. 76 (1978), 83-108; MR 58 #2734.
- [J2] _____, Covering properties and quasi-uniformities of topological spaces, Ph. D. Thesis, Virginia Polytech. Inst. and State Univ., Blacksburg, 1978.
- [K1] J. Kofner, Transitivity and the γ-space conjecture in ordered spaces, Proc. Amer. Math. Soc. 81 (1981), 629-635; MR 82h: 54050.
 - [K2] _____, Transitivity and orthobases, Canad. J. Math. 33 (1981), 1439-1447; MR 83c: 54039.
- [LF] W. F. Lindgren and P. Fletcher, Locally quasi-uniform spaces with countable bases, Duke Math. J. 41 (1974), 231-240; MR 49 #6173.
 - [N] V. V. Niemytzki, On the third axiom of metric space, Trans. Amer. Math. Soc. 29 (1927), 507-513.
- [R] H. Ribeiro, Sur les espaces à métrique faible, Portugal. Math. 41 (1943), 21-40; 65-68; MR 5, 149; 272
 - [W] W. A. Wilson, On quasi-metric spaces, Amer. J. Math. 53 (1931), 675-684.

DEPARTMENT OF MATHEMATICAL SCIENCES, GEORGE MASON UNIVERSITY, FAIRFAX, VIRGINIA 22030

Current address (Ralph Fox): 634 South Titirangi Road, Auckland 1207, New Zealand