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A REGULAR COUNTEREXAMPLE TO

THE y-SPACE CONJECTURE

RALPH FOX AND JACOB KOFNER

Abstract. This paper presents a completely regular counterexample to the conjec-

ture that every y-space is quasi-metrizable. Junnila has shown that developable

Y-spaces are quasi-metrizable; this example shows that "developable" cannot be

replaced by "quasi-developable". In the process we provide a method for construct-

ing non-n-pretransitive spaces.

1. Introduction. The y-space conjecture is the conjecture that every y-space is

quasi-metrizable. This conjecture has been proven for various classes of spaces,

among them spaces with orthobases, developable spaces, and suborderable spaces

[G-K2; J2; B-Kl]. In [F] it is shown how to construct a counterexample X to the

y-space conjecture from a y-space X having a neighbournet U with the property that

Uk is not a normal neighbournet for any k g N (such a space X may be obtained by

taking the topological sum of a sequence of y-spaces Xn, where Xn is not «-pretransi-

tive). However, even if X is completely regular, X need not be regular at all. A

sufficient condition for X to be completely regular is that X be completely regular

and that Uk be a clopen neighbournet for every k G N.

We present here a construction which begins with a quasi-metrizable space Y of

cardinality at most c which is not « +-pretransitive, and yields another quasi-metriz-

able space Y of cardinality c that is not (« + l)+-pretransitive. If U is a neighbour-

net on Y such that U"+ is not normal, then this construction yields a neighbournet

U on Y such that Û(n + l)+ is not normal (see Lemma 1 below). This construction will

allow us to inductively generate a sequence of spaces Xn = Xn_x with neighbournets

U„ = £/„_, such that Un"+ is not normal. If we take X to be the topological sum

X = U^_0 Xn and U = U^=0 U„, we may then apply [F] to construct a y-space X

which is not quasi-metrizable.

By starting from a suitable space X0, we can inductively guarantee that Xn will be

completely regular and that Uk will be clopen for every k g N (see Lemma 3 below)

In this case, the counterexample X will be completely regular, as intended.

2. Terminology. A quasi-metric is a generalized metric d satisfying the triangle

inequality d(x, z) < d(x, y) + d(y, z) but not necessarily the symmetry axiom

d(x, y) = d(y, x) [N; W]. A space X is said to be quasi-metrizable if it has a
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compatible quasi-metric d—i.e. at each point x G X the sets Bd(x; e) = [y: d(x, y)

< e), for e > 0, form a neighbourhood base.

We will use Junnila's neighbournet notation [Jl]. A neighbournet on a space Xis a

binary relation V such that V[x] is a neighbourhood of x for every x g X. A

neighbournet V is called open, closed or clopen if every F[x] is open, closed or

clopen, respectively. A sequence (Vn: « g N) of neighbournets is called 6as/c if at

each point x G A" the sets F„[x], for « g N, form a neighbourhood base; and normal

if F„2+1 ç F„ for each «. A neighbournet is said to be normal if it is a member of a

normal sequence of neighbournets.

With this terminology, a 7, space is quasi-metrizable if and only if it has a normal

basic sequence of neighbournets [R; Jl]. Similarly, a Tx space is a y-space if and only

it has a sequence (Vn: « G N) of neighbournets such that the sequence (V2: « G N)

is basic [H; LF; Jl]. Clearly every quasi-metrizable space is a y-space.

If U is a binary relation on a space A1 we define a new relation U+ on A" by

£/+[x] = D{i/[G]:G is a neighbourhood of x}. If U is a neighbournet then £/" ç

(l/") + ç í/" + 1 for each nonnegative integer « [Kl]. We will write U"+ for (t/")+.

A space X is called n-pretransitive ( « +-pretransitive) if whenever i/isa neighbournet

on A" then U" (U"+) is a normal neighbournet [FL, p. 191, §6.21; cf. also Kl]. The

«+-pretransitivity property lies strictly between «-pretransitivity and (« + 1)-

pretransitivity. Since U°[x] = (x}, observe that a space is 0-pretransitive (0+-pre-

transitive) if and only if it is discrete (the arbitrary intersection of open sets is open).

The importance of «- and «+-pretransitivity is that an «- or «+-pretransitive

Y-space is quasi-metrizable [FL, p. 165, §7.19], and that almost all partial solutions

to the y-space conjecture have implicitly used this property: [G; J2; Kl; K2] have all

shown that the spaces concerned were 2- or 2 +-pretransitive.

3. The construction of Y and Û. Let Y be a quasi-metrizable space and <F„:

« g N) a normal basic sequence for Y. The structure of Y is as follows.

The points of Y are the points of Y X R. We presume that R is partitioned into

sets A and B.

For each b g B we declare Y X ( b} to be a clopen subspace of Y canonically

homeomorphic to Y. If (y, b) g Y X {b} we define Vn[(y, b)] = Vn[y] X {b}.

We presume that Z is a chosen subset of Y X A; and for each (x, a) g Z that

5(x, a) is a chosen subset of Y X B. We define the basic neighbourhoods of

<x, a) g Z to be

K,[<*. A>] = {<*, «>} U V{Vn[y) X{b}:(y,b)^ S(x, a) and \b - a\< 2'"}.

All points (x, a) in X X A which are not in Z are isolated; for these points we

define Vn[(x, a)] = {<x, a)).

The structure of Y as outlined above does not by itself guarantee that Y will be

Hausdorff, even if Y is. However, Y will be Tx, and so the Hausdorff property will

be guaranteed if Y is regular. It is not difficult to show that (Vn: « g N) is a normal

basic sequence for Y; and hence Y is quasi-metrizable.
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The structure of Û is as follows. We presume that A is further partitioned into sets

Ap (p g N), and that Zp denotes the set of all points (x, a) g Z with a e Ap.

Define tVby

Û[(x,b)] = U[x] x{b)        iîbe B;

U[(x, a)] = Vp[(x, a)] if <x, a) <=Zp,p<= N;

Û[(x, a)] = {(x, a)} otherwise.

Observe that if (x, a) g Z, then

Û" + [(x,a)] = Û"[(x,a)] U D U{U"°Vk[y]x{b):(y,b) G S(x, a)
k = l

and\b-a\<2-k)

= Û"[(x,a)].

Note that the construction of Y and U depends on the choices made of A =

\Jp°=xA , B, Z, and S(x, a) for each (x, a) g Z. We will elaborate later on how

these choices are to be made. The lemmas below discuss the properties required of Y

and U.

Lemma 1. Suppose that Un+ is not a normal neighbournet on Y. If Y is constructed

so that

(I) B is a dense Baire subset of R;

(II) if E is a subset of Y X B, and the canonical projection of E onto B is somewhere

dense in R, then for every p g N there is a point (x, a) g Z such that (x, a) G

cl(£ n S(x, a)); and

(III) for each (x, a) g Z and each b g B there is at most one point of S(x, a) in

Yx {b};

then Û(n + 1)+ will not be a normal neighbournet on Y.

Proof. Let IF be a normal neighbournet on Y. To show that û{"+1)+ is not

normal, we will show that W2 £ Û(n + 1)+.

Because U"+ is not normal, we may find for each b G B a point yh g Y such that

W[(yh, 6->] £ Un+[yh] X {b}. Let Gh be a neighbourhood of yh in Y such that

W[(yh,b)]gi U"[Gh]x{b}.

By (I), we may find a fixed p g N and a subset D of B which is somewhere dense

in R such that Vp[yh] c Gh for all b g D.

By (II), there exists a point (x, a) g Zp such that (x, a) g cl({(yb, b): b g D)

n S(x, a)). Note that

<7(" + 1> + [<x, a)] = i7" + 1[(x,a>] = Ûn»Vp[(x,a)]

= {(x, a)} uU{í/" °Vp[y] X (b) : (y, b) g S(x, a) and \b - a\< 2"'}.

Choose some ( yfc, ft) g 1F[(x, a)] n 5(x, a) so that b G D. Then t7" ° F^>>,,] ç

U"[Gh] and hence we may find some point (z, b) g W[(yh, b)]\ U" ° Vp[yh] X

{b}. Thus <2, b) g IF2[(x, a)] and, by (III), (z, b) € Û"+1[(x, a)] =

C/<B+1)+[(x, a)], as required.
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Proposition 2. Suppose (x, a) g Z has a neighbourhood G = ((x, a)} U U°11G,

X { ft,}, where the G¡ are clopen in Y and the ft, converge in R to a. If (x, a) is the only

point of Z in Y X {a}, then G is clopen in Y.

Lemma 3. Suppose (a) each Vn is a clopen neighbournet on Y; (b) Uk is a clopen

neighbournet for each teN; and (c) Uk ° Vn is a clopen neighbournet for each k,

n G N. If Y is constructed so that

(IV) for each a g A there is at most one point ofZin Y X {a}; and

(V) for each (x, a) G Z, S(x, a) is a sequence {( y,, bj): i g N} where the b¡

converge in R to a;

then (â) each Vn is a clopen neighbournet on Y; (b) Ûk is a clopen neighbournet for each

k g N; and (c) Uk » Vn is a clopen neighbournet for each k, « G N.

Proof. It will suffice to show for each (x, a) g Z that Vn[(x, a)], Ûk[(x, a)]

and Ûk ° F„[(x,c7>] are clopen. Suppose (x, a) g Zp. By (V), let S(x, a) = (<y¡, bj):

i g NJ.Then

Vn[(x, a)] = {(x, a)} U(){Vn[y,] x{b,}: \b, - a\< 2-},

Ûk[(x, a)] = {<x, a)} U Ufí/*"1 o F„[ y,] X {ft,} : |ft,. - a| < 2""},

t/*oK„[<x)a>] = «x,a>}uU{i/*oFJ>,i]x{ft;.}:|ft,.-û|<2-''}

uU{c/*-1°F/,[yy]x(fty}:|ft>-a|<2-"}.

The required result now follows from Proposition 2, using (IV) and the assumptions

(a) and (c). (Note that if k — l = 0 then (Jk~l°Vp= Vp, and so we would use (a)

instead of (c) to guarantee that Uk~l ° V [y] was clopen.)

Now let us show that conditions (I) through (V) from Lemmas l and 3 may be

met by suitably constructing Y from a space Y of cardinality at most c.

First, we may partition R into sets A and B, where A has cardinality c on every

open interval of R and B is dense and Baire in R.

If the cardinality of Y is no more than c, there will also be no more than c

countable subsets £ of Y X B. Then by a straightforward transfinite induction,

choose for each countable E ç Y X B whose canonical projection onto B is dense in

some interval (cx,c2) in R and for each p g N, a distinct real number aE g A n

(e,, c2). Choose an arbitrary xE G Y and let S(xEp, aEp) be any sequence of points

( y,, ft,) in E where the ft, are distinct and converge in R to aEp.

Let Z consist of all points (xEp, aEp); and partition A into sets Ap (p G N) so

that aE G A . Then conditions (I) through (V) are met (note that it is sufficient to

prove (II) for countable sets E).

4. The counterexample. To complete the construction of the counterexample X, all

that remains to be done is to provide a suitable space X0 to start off the induction.

For this purpose we will choose the convergent sequence space {2~k: ieNJU {0}.

Observe that X0 is not 0+-pretransitive, and in fact t700+ will not be a normal

neighbournet no matter what U0 is. To satisfy the inductive assumptions (a), (b) and

(c) of Lemma 3 we may define the neighbounet U0 and the normal basic sequence

(V„: n g N> so that i/0[x] = X0 and Vn[2~k] = {2"*}; V„[0] = [2~k: k > «} U {0}.
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The counterexample X thereby produced will have the following properties. Note

that the construction of Y from Y and the construction of X from X both preserve

scatteredness, and that both increase the Cantor-Bendixson rank of the space by 1.

Therefore X will be scattered, and the Cantor-Bendixson rank of X will be co + 1.

Consequently, X will be transitive (by transfinite induction and [FL, 6.16 and 6.17]),

hereditarily weakly ô-refinable, and quasi-developable. Junnila has shown in [J2]

that developable y-spaces are quasi-metrizable; this demonstrates that developable

cannot be weakened to quasi-developable.

We remark in passing that, with a modified construction of Y, a counterexample

X can be constructed which has the above properties and which is in addition

submetrizable—that is, it has normal Gs-diagonal sequence.

Finally, we observe that the construction given in [F] and used here cannot

produce a normal counterexample to the y-space conjecture. In particular, if X is any

Tx space containing at least 2 points then X will not be normal. For example, if X is

the 2-point discrete space (0,1} then X will consist of levels 1 through co inclusive of

a Cantor tree with the tree topology, a nonnormal space. To see this for a larger

space X, consider a 2-point subset of X and the Cantor tree it generates in X. This

raises the question: Are normal y-spaces quasi-metrizable?

Added in proof. The answer to the last question is no; there exists a paracom-

pact counterexample.
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