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HOMOLOGY OF INTEGRAL UPPER-TRIANGULAR MATRICES

W. G. DWYER

Abstract.  We calculate the homology of the multiplicative group of integral

upper-triangular« X « matrices at all primes/) > « - 1.

1. Group homology. For any ring A, let G\n(A) be the general linear group of

invertible « X « matrices over A, and U„(A) the subgroup of upper-triangular

matrices with ones on the diagonal. The purpose of this note is to prove Theorem

1.1, which gives a calculation of the Eilenberg-Mac Lane group homology of Un(Z)

at all primes p ^ « — 1. (This group homology is the same as the homology of the

compact nilmanifold Un(R)/Un(Z).)

For any permutation a in the symmetric group Sn, let Ma e Gl„(^4) denote the

matrix with the property that Mab¡ = ba.¡-., where b¡ is the column vector with one in

the z'th coordinate and zero in the others. Let U~(A) be the group of lower-triangu-

lar matrices inG\n(A) with ones on the diagonal, and U° the intersection

(M;xU/(A)Ma)nun(A).

It is easy to see that U°(A) is the subgroup of Un(A) given by matrices which have

zero in row /', column y whenever i < j and o(i) < a(j). In particular, each quotient

U°(R)/U°(Z) is a compact nilmanifold, and therefore has a fundamental homology

class, well defined up to choice of orientation. The image of this fundamental class

in Hm(U„(Z)) under the embedding U°(R)/U°(Z) -* U„(R)/U„(Z) will be denoted

Q.
Remark. The dimension of the cyclic Ca is the cardinality of the set

L(o)= {(/',;): 1 < i <j ^n,a(i)> o(j)}.

We will denote this cardinality by 1(a). Note that the permutation a is uniquely

determined by the set L(a).

Let Z(p) stand for the localization of the ring Z at the prime p.

1.1 Theorem. If p ^ « - 1, then Hm(Un(Z),Z(p)) is the free Z(p)-module on the

classes Ca, a e Sn.

The proof of Theorem 1.1 is in two steps. Let Un denote Un(Z).

1.2 Proposition. The cycles Ca, a e Sn, generate a free Z-summand of H+(Un,Z)

of rank «!.
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Proof. For each a e Sn with k = 1(a), it is enough to produce a map /„:

77¿(¿7„,Z) -> Z such that

fa(Ca)= +1,    and

/„(CT)=0,       r#«,/(T) = /(c).

Let p be the order-reversing permutation given by p(i) = n + 1 — /', and let it =

pap1. Since l(<rr) + 1(a) = dim(i/„(R)/c/,(Z)), algebraic intersection with the cycle

C„ defines a map/0: Hk(Un,Z) -» Z. Since the geometric intersection of C„ and C0 is

a single point, it is clear that/„(C„) = + I.U t ¥= a but /(t) = /(a), then C„ and CT

intersect cleanly [9, p. 37] in a positive-dimensional compact nilmanifold X. By the

clean intersection formula [9, p. 38], f„(CT) is equal to the Euler characteristic of X,

which is clearly zero.

Let w„ = un(Z) be the Lie algebra of strictly upper-triangular matrices in gl„(Z).

1.3 Proposition. If p > « — 1, the Lie algebra homology Hif(un,Z(pj) is a free

Z ( ^-module of total rank n !.

The proof of this will occupy §§2-5.

Remark. P. Kunkel has shown that if p <n — 1, the Lie algebra homology

H#(un, Z(pj) contains/7-torsion.

Proof of 1.1. The universal enveloping algebra of u „ is the associated graded of

Z[Un] with respect to the filtration given by powers of the augmentation ideal [7, §7;

1] so that there is a spectral sequence [5, 4.5(i); 10, p. 20]

[EÍ « = H*(un,Z(p))\ => H*(U„,Z(p)).

By 1.2, 1.3 and a counting argument, this spectral sequence collapses and shows that

H*(U„, Z( j) is free of rank «!. Proposition 1.2 then identifies the «! generators.

Remark. The homology with real coefficients of the group U„(Z) is known by [8]

to be isomorphic to the real Lie algebra homology 77*(w„(R)). This real Lie algebra

homology has been computed classically by Bott and Kostant [6, 4]. In §§2-5 we

give a new proof of an integral strengthening of the Bott-Kostant result; this new

proof is closely related to recent work of Friedlander and Parshall on modular Lie

algebra homology, and many of our results can be derived from theirs.

Remark. This work was motivated by some exploratory computer calculations of

Lie algebra homology carried out by Evens and Priddy. The Koszul complex grading

described in §3 can be used to speed up these calculations quite a bit, while

Proposition 5.2 severely constrains possible torsion in the answer.

2. Lie algebra resolutions. If a is a Lie algebra which is free over Z, the standard

free resolution of the trivial module Z over the enveloping algebra U(q) is the

complex P *( a ) with

Rk(a) = U(a) 8zA'(o)
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and differential d: Rk(a) -» Rk_x(a) given by the formula

k

d(x ® Xx A   • • ■ A xk) =  52 (-1)'    i**/) ® *i A   - • ■ A Je, A   ■•• Axt
1 = 1

+       Jl      (-1)'  ^ ® [■*/> xj] A JC, A   ... Ax, A   ... AXj A   ... Axk.
l<i<y<*

(Here Ak(a) denotes the kth exterior power of a over Z.) We will let C*(a) denote

Z ® U(a)P,(a), so that the homology groups of C*(a) are the Lie algebra homology

groups 77„(a,Z). The chain complex C*(a) is the standard Koszul complex [2, p.

290], with Ck( a ) = A*( a) and d: Ck( a ) -> Ck_ x( a ) given by

d(xx A   ■■■ A xk)

=       52      (_1)'  J[xi> xj] A xi A   • ■ • A Jc, A   ■ ■ ■ A Xj A   ■ ■ ■ A xk.

Now suppose that g is a Lie algebra which is free over Z, and that a and a' are

complementary subalgebras of g in the sense that a + a' = g,ana'= 0. We will

let R m( g, a ') denote the II ( g ) chain complex given by

P,(8,a') = U(g)®U(0A*(g/a').

The differential d: Rk(Q, a') -» Rk_x(Q, a') is determined by the formula

k

d(x ® xx A ■ ■ ■ A xk) = 52 (-1)'+ (xy¡) ® xx A ■ • • A % A  "•'Âxi
; = 1

+       £      (-1)' 7* ® ",[ji> J'y] A X, A   • • • A Jc, A   • • ■ A Xj A   ■ ■ ■ A xk
l</<y<A:

where w: g -» g/o' is the projection and y¡ in g stands for a representative of jc, in

g/a' [4, p. 40]. The complex P*(g, a') is a (generally nonfree) resolution of the

trivial module Z over 11(g); in particular, P**(g, a') serves by restriction as a

resolution of Z over 11(a).

2.1 Lemma. 7« the above situation, the natural map

U(a) ®zA*(a) - 11(g) •n(,.)A*(a/a/)

g/ues a« isomorphism P *( a ) -* P *( g, a ') o/ c«a/« complexes over 11 ( a ).

Proof. See [4, Proposition 1.2].

2.2 Proposition. Suppose that g is a Lie algebra which is free over Z and that a is a

subalgebra of g which possesses a complement. Then choice of a complement a ' for a

determines an action of the center 11(g)8 of U(g) on R„(a.). The induced action of

11(g)8 on Hn(c\, Z) factors through the augmentation map e: 11(g)8 -» Z.

Proof. By 2.1, choice of a complement a' determines a U(a)-isomorphism

Rm(a) = R*,(g, a')- Since 11(g)8 clearly acts on P*(g, a') in a way which com-

mutes with the action of 11(g) and thus of U(a), the first part of the proposition is

immediate. Suppose that y g 11(g)8. By elementary homological algebra, the 11(a)
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chain homotopy class of the map y: Rm(a) -» P*(a) is determined by the induced

map H0(R*(a)) = Z -» 770(P*(a)) = Z, which is multiplication by e(y); this gives

the second statement.

2.3 Remark. We will apply 2.2 with g = gl„(Z), a = un, and a' equal to the

subalgebra of g consisting of matrices which are zero in the strict upper triangle.

3. Gradings. Suppose that W is an abelian group. An abelian group G is graded by

W if for each w g W there is a subgroup Gw of G such that G = ®we[yGw- The

elements of Gw are said to be homogeneous of degree w. A Lie algebra a is graded by

IF if a is graded as an abelian group and if in addition, for each pair u, v of elements

of W,[au, ajc au+v.

If a is a Lie algebra graded by W, then each abelian group Ck(a) = Ak(a) in the

chain complex C^a) can also be graded by W according to the usual convention

that if x¡ is homogeneous of degree w-, 1 < i < k, then xx A ■ ■ ■ A xk is homoge-

neous of degree wx + ■ ■ ■ + wk. It is clear from the formula in §2 that the

differential d of Cm(a) respects these gradings, and therefore that the homology

groups 77„( a, Z) inherit a grading by W.

For each pair of integers i, j with 1 < i'<j < «,let feA g un be the matrix which

is identically zero except for a one in row i, column j. Let 4>, > g Z" be the vector

which is identically zero except for a one in coordinate i and a -1 in coordinate j.

We will use $ to denote the set {$¡¿. 1 < /' <y < «}.

3.1 Proposition. The Lie algebra un is graded by Z" in such a way that each matrix

e¡j, 1 </<_/< n, is homogeneous of degree </>,  .

Proof. This follows immediately from a calculation with matrix commutators.

According to the remarks above, it is a consequence of 3.1 that Cm(un) and

H*(u„, Z)) inherit a Z"-grading.

3.2 Proposition. If X = (Xx,...,Xn) g Z", then the homogeneous summands

C*(un)x andH*(un, Z)x vanish unless 1 — /' < X, < « — / andT,"=xr\i = 0.

Proof. Since C*(un) = A*(un), it follows from the definition of exterior algebra

that C*(m„)a = 0 unless À = E^s«?) for some subset S of 4>. This easily gives the

desired condition.

4. Two combinatorial lemmas.

4.1 Lemma. Suppose that p is a prime, « < p + 1, and ax,...,an are integers

between -1 and -n such that the sequences (ax,.. .,an) and (-1,...,-«), when reduced

mod p, differ by a permutation. Suppose also that E,"_,a,; = £,"_,(-/). Then the

sequences (a,,... ,a„) and(-\,...,-«) differ by a permutation.

Proof. If « < p the lemma is trivial; the summation condition is not necessary. If

« = p + 1, the apparent possibility that -(p + 1) appears twice in the list of ajs is

ruled out by the summation condition.

4.2 Lemma. For each permutation a in Sn, there is a unique subset Ra of <¡> (see §3)

such that (a(l),... ,a(n)) = (1,...,«) + T.^eRß>.
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Proof. Proceed by induction on «; the conclusion is obvious if « = 2. In general,

suppose that a(k) = 1, and note that in order for the desired equation to hold the

set Ra must contain at least k — 1 elements of O which have -1 in coordinate k. In

fact, O contains exactly k - 1 such elements; let A be the collection of them.

Inspection shows that

(2,...,k,\,k + 1,...,«) = (1,...,«) +   E <í>
<¡>eA

and induction shows that there is a unique subset B of í> containing vectors with

zero in coordinate k such that

(a(l),...,a(n)) = (2,...,k,l,k + l,...,«)+   £ *.
<¡>e£

Set P0 = ,4 UP. This completes the proof.

5. Calculation of Lie algebra homology. In [3, p. 196] Carter and Lusztig exhibit «

elements Cx,...,Cn in the center of the enveloping algebra U(gl„(Z)). Let yx,...,yn

be the images of Cx,...,Cn under the automorphism of U(gl„(Z)) induced by the

automorphism of gl„(Z) given by conjugation with the matrix of the permutation

p g Sn, where p(i) = « + 1 — /'. Recall that e: U(gln(Z)) -> Z is the augmentation

map.

5.1 Proposition. The elements yx,...,y„ of the center of ll(gl„(Z)) have the

following properties :

(1) e(yk) = sk(-n,... ,-l), where sk is the kth elementary symmetric function in «

variables.

(2) The map yk: C*(un) -* C*(w„) provided by 2.3 preserves the grading of C*(un)

by Z" derived from 3.1.

(3) 7/t; G C*(«„) is homogeneous of degree X = (A,,... ,X„), then

yvk = sk(K - n,...,Xn - l)v.

Proof. All three properties follow from an elementary calculation with the

Carter-Lusztig formula.

5.2 Proposition. For each X = (Xx,...,Xn) g Z", the homogeneous summand

H*(u„)\ 's annihilated by the greatest common divisor of the collection of numbers

sk(Xx — n,X2 - n + 1,... ,Xn - 1) - sk(-n,-n + 1,.. .,-1)

as k varies between 1 and «.

Proof. This is an immediate consequence of 2.2 and 5.1.

5.3 Proposition. The homogeneous summand H+(un,Z( x)x is zero unless the

polynomials Vl"=x(x + X, - n + /' + 1) and n,"=1(jc -« + /'- 1) are equal mod p,

that is, unless the sequences (Xx — n,...,Xn — 1) and (-«,...,-1), when reduced

mod p, differ by a permutation.

Proof. This follows from the fact that the symmetric functions sk(ax,...,an)

appear as coefficients of the polynomial (x + ax\x + a2) ■ ■ ■ (x + an).
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5.4 Corollary. If p > n — 1, then H+(un,Z(p))x = 0 unless the sequences

(Xx — 1,...,X„ — 1) and (-n,... ,-1) differ by a permutation.

Proof. This is a combination of 3.2, 4.1, and 5.3.

Proof of 1.3. By 5.4, if H*(un,Z(p))x # 0 then the sequences (X, -«,...,X„ - 1)

and (-«,...,-1) differ by a permutation a g S„. Adding n + 1 to the elements

involved shows that the sequences (X, + 1,... ,X„ 4- «) and (1,...,«) differ by a. By

4.2, there is a unique subset Ra of 3> such that (X,,... ,X„) = Ei€Ä 4>. This implies

that C*(un)x = A*(un)x is free of rank one (compare proof of 3.2) and therefore of

necessity concentrated in a single dimension. It follows that the differential of

C*(w„)\ is trivial, and that Hm(un, Z)x and H*(u„, Z(pj)x are both free of rank one.
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